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a b s t r a c t

Event-based control aims at reducing the amount of information which is communicated
between sensors, actuators and controllers in a networked control system. The feedback
link is only closed at times at which an event indicates the need for an information
update to retain a desired performance. Between consecutive event times the control
loop acts as a continuous system, whereas at the event times it performs a state jump.
Thus, the event-based control loop belongs to the class of hybrid dynamical systems.
In this paper a new method for decentralized event-based control is proposed. Two
methods are presented for the stability analysis of the decentralized event-based state
feedback control of physically interconnected systems. The comparison principle leads
to a stability criterion that provides an upper bound for the coupling strength for which
the stability of the uncoupled event-based control loops implies ultimate boundedness
of the interconnected event-based system. It is shown that ultimate boundedness of the
event-based state-feedback loop is implied by the asymptotic stability of the continuous
state-feedback system. Furthermore, it is explained how the number of events can be
reduced by estimating the interconnection signals between the subsystems and two
different estimation methods are proposed. The derived methods are demonstrated for a
thermofluid process by simulation and experiments.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Event-based control

The aim of event-based control is to reduce the communication effort between sensors, actuators and controllers by
closing the control loop only at time instants tk (k ∈ N0) when an event indicates the need for information exchange
to achieve a desired closed-loop performance. The event-based control loop is a hybrid dynamical system which is
characterized by a continuous state flow between the events and state resets at the event times, as explained in [1].

The system considered in this paper consists of N decentralized, and physically interconnected event-based state-
feedback loops (Fig. 1). The solid lines represent continuous information transmission, whereas the dashed lines stand for
the discontinuous communication at the event times tk. Every control loop consists of a subsystem of the plant with its
physical interconnection, an event generator (EG) that determines the event times tk and a control input generator (CIG),
which produces a continuous control signal between two consecutive events, based on the information received after the
last event.
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Fig. 1. Interconnected event-based control system.

The i-th subsystem is described by the linear state-space model

ẋi(t) = Aixi(t) + Biui(t) + Eisi(t), xi(0) = xi0 (1a)
zi(t) = Czixi(t), (1b)

in which xi ∈ Rni denotes the plant state, ui ∈ Rmi the control input, si ∈ Rpi the coupling input and zi ∈ Rqi the coupling
output. The subsystems are interconnected according to the relation

s(t) = Lz(t) (2)

with

s(t) =

s⊤1 (t) · · · s⊤N (t)

⊤

z(t) =

z⊤

1 (t) · · · z⊤

N (t)
⊤

. (3)

The event-based state-feedback controllers are designed under the assumption of vanishing interconnections (si = 0),
hence, the N isolated event-based control loops are ultimately bounded. This paper investigates, by using the comparison
principle, under what conditions on the interconnection L, the stability of the subsystems implies stability of the event-
based overall system. Moreover, it is presented how the number of events triggered in the overall system can be reduced
by equipping the control input generators with an estimator of the interconnection signals and two estimationmethods are
provided. This extension of the control input generators is shown to improve the overall system performance, while on the
other hand it does not affect stability.

1.2. Literature review

In recent years numerous publications have been devoted to event-based and self-triggered control approaches, see
e.g. [2–5], motivated by the idea of reducing computational as well as communication effort in networked control systems.
While most approaches focus on single-loop event-based control systems, the analysis of interconnected event-based
control loops has been addressed only in a few publications. The behavior of event-based multi-agent systems has been
investigated in [6,7], where several subsystems are not interconnected due to physical couplings but by a common control
aim. Refs. [1,8] studied asynchronous measurements or controller updates in an event-based control system without
explicitly considering physical interconnections between subsystems. [1] analyzed an event-based control approach for
linear systems where the output of the plant and the controller can be grouped into several nodes. Using the framework of
impulsive systems, stability conditions in form of linearmatrix inequalities were developed. [8] studied event-based control
of nonlinear systems where distributed sensor nodes transmit their measurements to a centralized control unit. The system
was shown to be input-to-state stabilizable under the requirement of synchronized measurements in all components. This
work has been extended in [9] in order to allow for asynchronous updates. Distributed event-based control of physically
interconnected systems has been investigated in [10,11], which are discussed below in more detail. In these references
triggering conditions for the subsystems were defined such that a desired decay of a Lyapunov function for the overall
system is guaranteed. The stabilization of large-scale systems using distributed event-based output feedback control has
been examined in [12] for passive systems.

All these approaches have in common that a zero-order hold is used to keep the control input constant between two
consecutive events. In contrast to that, this paper proposes a design approach that follows the idea of [13] and yields
control inputs with exponential flow, which requires a different stability analysis method than the ones which have been
presented in the mentioned references, particularly regarding [10,11]. These references have proposed design methods
for the triggering conditions to render the overall control system Lp-stable or asymptotically stable, respectively. Besides
the fact that [10,11] investigate distributed event-based control of a general class of nonlinear system, whereas this paper
proposes a method for the stability analysis of decentralized event-based control of linear systems, these approaches
basically differ from the present work in three points: (i) While the triggering conditions in [10,11] depend upon the system
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dynamics, the threshold of the triggering condition that is used here can be freely chosen. (ii) The control aim in [10,11]
is to drive the system state to the origin, whereas this approach renders the overall system ultimately bounded (i.e. once
the state enters a specified target region X, it remains there for all time). (iii) The main difference between [10,11] and the
present work lies in the analysis approach. While [10,11] derive the stability guaranteeing triggering conditions based on
requirements to a system of Lyapunov functions, this work uses the comparison principle to determine a condition that can
be used to prove ultimate boundedness in dependence upon the interconnections. This condition will be shown to hold true
for sufficiently weak couplings between the subsystems, which is a similarity to the approaches in [10,11], which work for
weakly coupled systems, as well.

1.3. Outline of the paper

Section 2 presents an approach to decentralized event-based state-feedback control. A general condition for the stability
of the event-based control system is derived in Section 3 which says that the event-based overall system is ultimately
bounded if the continuous state-feedback system is proven to be asymptotically stable. In Section 4 the comparison principle
is used to derive a criterion that can be used to test the stability of the composite event-based control system. Moreover,
this criterion is used to determine the ultimate bound for the event-based control system. Section 5 provides a technique for
improving the performance of the event-based composite system by estimating the impact of the coupling to a subsystem.
The results are demonstrated in Section 6 for a thermofluid process.

1.4. Notation

R and N denote the set of all real or natural numbers, respectively. R≥0 is the set of all non-negative real numbers and
N0 = N∪{0}. For a scalar s, |s| denotes the absolute value. For vectors andmatrices the |·|-operator applies to every element.
For two vectors v1, v2 or two matrices M1,M2 the relations v1 ≥ v2 or M1 ≥ M2, respectively, holds element-wise. ∥x∥∞

represents the uniform norm of x. The identity matrix of dimension α is represented by Iα . λp(A) denotes the Perron root of
the matrix A. The asterisk ∗ symbolizes the convolution operator:

G ∗ u =

 t

0
G(t − τ)u(τ )dτ .

A = diag (A1, . . . ,AN) denotes a block diagonal matrix with the matrices Ai, (i = 1, . . . ,N) on the main diagonal. If the
range of the indices i is clear from the context, this notation is abbreviated by A = diag (Ai).

2. Decentralized event-based control

2.1. Structure of the event-based control system

This paper deals with the analysis ofN interconnected event-based subsystems as shown in Fig. 1. Themethod presented
in [13] is applied to design the decentralized event-based state-feedback controllers for the isolated subsystems

ẋi(t) = Aixi(t) + Biui(t), xi(0) = xi0, (4)
i ∈ N = {1, . . . ,N}. First, a continuous state-feedback controller

ui(t) = −Kixi(t) (5)
is designed for each subsystem resulting in the isolated closed-loop subsystems

ẋi(t) = Āixi(t), xi(0) = xi0, (6)
where the matrix

Āi = (Ai − BiKi)

is Hurwitz. The state-feedback gain Ki is chosen such that the closed-loop system (6) has a desired performance. Both the
control input generator and the event generator use the model

ẋsi(t) = Āixsi(t), xsi(t+k ) = xi(tk) (7)

of the decoupled continuous reference system (6), where xsi ∈ Rni denotes the model state and t+k represents the right limit
of the event time tk at which the state of the model (7) is reset to the current plant state xi(tk).
Control input generator. The i-th control input generator uses the model (7) to generate the decentralized control input

ui(t) = −Kixsi(t). (8)
The application of the control input (8) to the i-th subsystem (1a) yields the model

ẋi(t) = Āixi(t) + BiKi

xi(t) − xsi(t)


+ Eisi(t), xi(0) = xi0.

The coupling input si(t) generates a difference
x1i(t) = xi(t) − xsi(t), (9)
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between the model state xsi(t) and the plant state xi(t). If this difference is getting larger the control input (8) may be
inadequate relating to the system state xi(t). Hence, the state of the model (7) needs to be reset.
Event generator. The event generator determines the time instants tk at which a reset of the model state xsi is necessary. It
triggers an event whenever the relation

∥x1i(t)∥∞ = ∥xi(t) − xsi(t)∥∞ = ēi (10)
is met, where ēi ∈ R+ denotes the event threshold for subsystem i. At this time tk, in the i-th event-based control loop the
state of the model (7) used in both generators is reinitialized with the communicated current plant state xi(tk).

2.2. Inter-event time

This section shows that the minimum time that elapses between two consecutive events triggered within one event-
based control loop, referred to asminimum inter-event time, is strictly greater than zero. Given that the overall event-based
control system consists of a finite number N of subsystems, the accumulation of infinite events in finite time (Zeno behavior
(cf. [14])) can be excluded.

The difference state x1i(t) is described by the state-space model

ẋ1i(t) = Aix1i(t) + Eisi(t), x1i(t+k ) = 0 (11)
for the interval t ∈ [tk, tk+1), which yields

x1i(t) =

 t

tk
eAi(t−τ)Eisi(τ )dτ .

The next event is triggered at time t = tk+1 when the difference state x1i(t) satisfies the equation

∥x1i(tk+1)∥ =

 tk+1

tk
eAi(tk+1−τ)Eisi(τ )dτ

 = ēi. (12)

Assume that the coupling signal si(t) is bounded for all t ≥ 0, then Eq. (12) implies that tk+1 > tk holds for all k ∈ N0.
Note that the application of a constant event threshold ēi > 0 entails a positive inter-event time if the overall event-based

control system is stable, since the coupling signal si(t) is assumed to be bounded. Section 4 derives a sufficient condition
on the interconnection between the event-based control loops that guarantees stability of the overall control system and
which, hence, fulfills the hypothesis of the following lemma.

Lemma 1. Assume that the coupling signal si(t) is bounded for all t ≥ 0. Then theminimum inter-event time for each event-based
control loop is positive.

2.3. Decentralized event-based control system

In summary, the decentralized event-based overall system consists of
• the plant (1), (2),
• N control input generators using model (7) for generating the control input (8) and
• N event generators containing model (7) which trigger an event whenever the condition (10) is satisfied.

An event in subsystem i only leads to a state reset of themodels of the corresponding subsystemwhich causes asynchronous
state resets in the overall system.

Due to an initial reset of the model states xsi(0) at time t = 0, x1i(0) = 0 holds for all i ∈ N . In addition, the triggering
condition (10) together with the state reset causes x1i(t+k ) = 0 for all k ∈ N0, which implies the boundedness of the
difference state (9) according to

|x1i(t)| ≤

ēi · · · ēi

⊤
= ei, ∀t ≥ 0, (13)

where ei is a vector of dimension ni.
The decentralized event-based controllers are only known to stabilize the isolated subsystems. Hence, the main analysis

problem to be solved in the following concerns the question on what condition the stability of the isolated event-based
control loops implies the stability of the overall control system. This question will be answered in Section 3 by showing that
any condition that is sufficient to prove the asymptotic stability of the continuous state-feedback system is likewise sufficient
to prove the event-based state-feedback system to be ultimately bounded (see Definition 1 for a definition of ultimate
boundedness). This result will be made more concrete in Section 4 which derives a stability test for the interconnected
event-based control loops.

3. General stability condition

This section investigates the relation between conditions for the asymptotic stability of continuous state-feedback
systems and conditions for the ultimate boundedness of event-based control systems that are realized according to the
design method presented in Section 2.
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Definition 1 (Ultimate Boundedness, [15]). The event-based control system (1), (2), (7), (8), (10) is said to be globally
ultimately bounded (GUB) if there exists a bounded set X and a time t̄ such that for all initial states x0 the following relation
holds:

∃t̄ : x(t) ∈ X, ∀t ≥ t̄.

The following investigates the asymptotic stability of the continuous control system. First, consider the overall plant that
is described by the state-space model

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

with x(t) =

x⊤

1 (t) · · · x⊤

N (t)
⊤

, B = diag (Bi) and the matrix A composed of the blocks

A(i, j) =


Ai for i = j
EiLijCzj for i ≠ j.

Assume that the decentralized control stations (5) are designed such that the overall controller

u(t) = − diag (K1, . . . ,KN)  
:=K

x(t)

yields an asymptotically stable system
d
dt x̂(t) = (A − BK )  

:=Ā

x̂(t), x̂(0) = x0

where the matrix Ā = (A − BK ) is Hurwitz. The state is indicated with a hat in order to distinguish this signal from the
corresponding one of the event-based control system that is investigated in the following.

Consider the event-based control system where the input is generated by means of the model

ẋs(t) = Āxs(t), xsi(t+k ) = xi(tk)
u(t) = −Kxs(t)

which yields the closed-loop system

ẋ(t) = Ax(t) − BKxs(t)

= Āx(t) + BK

x(t) − xs(t)


. (14)

Note that the deviation between the plant state xi(t) and themodel state xsi(t) is bounded according to Eq. (10) for all i ∈ N
which implies

∥x(t) − xs(t)∥∞ ≤ max
i∈N

ēi.

Hence, the interconnected event-based control loops (14) are GUB, because the matrix Ā is Hurwitz by the design of the
continuous state-feedback system.

Theorem 1. Assume that the continuous control system (1), (2), (5) is asymptotically stable. Then the interconnected subsystems
(1), (2) together with the decentralized event-based control stations (7), (8), which are reset whenever the condition (10) holds,
is ultimately bounded.

Note that the designmethod proposed in Section 2 can be interpreted as an event-based implementation of a continuous
decentralized state-feedback controller. This result now shows that this design method always yields an overall control
system that is ultimately bounded, given that the continuous state-feedback controller renders the system asymptotically
stable. The following section derives a condition that can be used to test the asymptotic stability of the continuous state-
feedback system and which will be shown to be sufficient to prove the ultimate boundedness of the event-based control
system. Based on this analysis the ultimate bound is explicitly determined.

4. Stability analysis using the comparison principle

4.1. Basic idea of the analysis method

This section derives a condition on the interconnection relation (2) under which the stability of the isolated event-based
control loops implies stability of the overall system (1), (2), (7), (8). Note that the overall event-based control system is a
hybrid dynamical systemwhich exhibits a complex behavior that is characterized by a sequence of state jumps at the event
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times and continuous dynamics in between events. Moreover, the state jumps occur asynchronously in the decentralized
event-based control loops which further complicates an analysis.

In order to reduce this complexity the subsequently presented analysis first develops comparison systems for the event-
based control loops. These comparison systems are linear systems that produce upper bounds on the signals that occur in
the event-based control loops for all t ≥ 0. Second, a condition for the stability of the interconnected comparison systems is
derived which implies stability of the overall event-based control system. The obtained stability condition can, hence, also
be used to test stability of the event-based control system.

4.2. Comparison systems

The presented stability analysis makes use of comparison systems which yield upper bounds on the signals of the
respective subsystems.

Definition 2. Consider the isolated subsystem (4) that has the state trajectory

xi(t) = eĀitxi0 + Gxui ∗ ui,

where

Gxui(t) = eĀitBi (15)

is the impulse response matrix. The system

ri(t) = F̄i(t) |xi0| + Ḡxui ∗ |ui| (16)

with ri ∈ Rni is called a comparison system of subsystem (4) if it satisfies the inequality

ri(t) ≥ |xi(t)| , ∀t ≥ 0

for an arbitrary bounded input ui(t).

A method for finding a comparison system is given in the following lemma.

Lemma 2 ([16]). The system (16) is a comparison system of the system (4) if and only if the matrices Fi(t) and Gxui(t) satisfy the
relations

F̄i(t) ≥

eĀit
 , Ḡxui(t) ≥ |Gxui(t)| , ∀t ≥ 0

where the impulse response matrix Gxui(t) is defined in Eq. (15).

4.3. Analysis of the continuous overall system

This section derives a method for the stability analysis for the continuous overall system (1), (2) with continuous state
feedback

ui(t) = −Kixi(t), ∀i ∈ N (17)

which is adapted from an analysis method that has been previously published in [16]. The method is extended in the next
section to the case of event-based state-feedback control.

The controlled subsystems (1), (17) are described by the state-space models

d
dt x̂i(t) = Āix̂i(t) + Eisi(t), x̂i(0) = xi0 (18)

zi(t) = Czix̂i(t)

for i ∈ N , where x̂i ∈ Rni denotes the state of the i-th continuous state-feedback loop. The behavior of subsystem i from
input si to state x̂i is given by

x̂i(t) = eĀitxi0 + Gxsi ∗ si

with

Gxsi(t) = eĀitEi. (19)

Hence, the system

rx̂i(t) = F̄i(t) |xi0| + Ḡxsi ∗ |si| (20)
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with

F̄i(t) =

eĀit
 , Ḡxsi(t) = |Gxsi(t)| (21)

is a comparison system for the original system (18).
In order to investigate asymptotic stability of the overall system, set

rx̂(t) =

r⊤

x̂1(t) · · · r⊤

x̂N(t)
⊤

, x0 =

x⊤

10 · · · x⊤

N0

⊤

and

F̄(t) = diag

F̄i(t)


, Ḡxs(t) = diag


Ḡxsi(t)


.

Then the interconnection of the comparison systems (20) according to

|s(t)| ≤ |L| |z(t)| ≤ |L| |Cz|
x̂(t)

yields the comparison system for the interconnected control loops

rx̂(t) = F̄(t) |x0| + Ḡxs ∗ |s|

= F̄(t) |x0| + Ḡxs |L| |Cz| ∗
x̂ ≥

x̂(t) (22)

where Cz = diag (Czi). Inequality (22) is an implicit bound on the overall state x̂(t). From the comparison principle [16] it is
known that if the condition

λp


∞

0
Ḡxs(t) |L| |Cz| dt


< 1 (23)

is satisfied, the impulse response matrix

G(t) = δ(t)In + Ḡxs |L| |Cz| ∗ G (24)

exists and is non-negative and, hence, (22) can be rewritten in explicit form

rx̂(t) = G ∗ F̄ |x0| ≥
x̂(t) . (25)

In (24), δ(t) represents the Dirac impulse and n =
N

i=1 ni. The system (25) is a comparison system for the interconnected
continuous control loops (2), (18). By virtue of the condition (23), rx(t) is known to converge to zero which implies
the asymptotic stability of the interconnected continuous control loops (2), (18). The following theorem summarizes the
resulting stability test.

Theorem 2. Consider the interconnected continuous control loops (2), (18). If the inequality (23) is satisfied, the overall
continuous state-feedback system (2), (17) is asymptotically stable.

Note that the result presented in Theorem2 is similar to a result that has been previously published in [16]. This approach
is extended in the following part to the case of event-based state-feedbackwhichwill then be used to determine the ultimate
bound for the overall event-based control system.

4.4. Analysis of the event-based overall system

This section extends the previously developed stability analysismethod to event-based state-feedback. Due to the event-
based sampling the state of the overall hybrid system cannot be expected to converge asymptotically to the origin, but to
a bounded set X ⊂ Rn. Hence, the subsequent analysis investigates the stability of the event-based control system in the
sense of ultimate boundedness (cf. Definition 1).

The i-th subsystem (1a) with event-based control (7), (8) is described by the state-space model

ẋi(t) = Āixi(t) + BiKix1i(t) + Eisi(t), xi(0) = xi0
zi(t) = Czixi(t)

which yields the state trajectory

xi(t) = eĀitxi0 + Gxxi ∗ x1i + Gxsi ∗ si

with

Gxxi(t) = eĀitBiKi
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and the difference state x1i(t) and the impulse response matrix Gxsi(t) defined in (9) or (19), respectively. An upper bound
on the state xi(t) is obtained by means of the comparison system

rxi(t) = F̄i(t) |xi0| + Ḡxxi ∗ |x1i| + Ḡxsi ∗ |si| (26)

with

Ḡxxi(t) = |Gxxi(t)|

and F̄i(t) and Ḡxsi(t) given in (21). As the difference state x1i(t) is bounded according to Eq. (13) the following relation holds:

Ḡxxi ∗ |x1i| =

 t

0
Ḡxxi(t − τ) |x1i(τ )| dτ ≤ emax i

with

emax i =


∞

0
Ḡxxi(τ )dτ · ei. (27)

Given (27) the comparison system (26) can be reformulated as

rxi(t) = F̄i(t) |xi0| + emax i + Ḡxsi ∗ |si| .

Note that the difference between the upper bound on the behavior of the continuous system (20) and the event-based
system (26) is only the additional term emax i, whereas the influence of si(t) on the state xi(t) remains unchanged.

A comparison system for the overall event-based control loop is obtained in the same way as for the continuous system:

rx(t) = F̄(t) |x0| + emax + Ḡxs |L| |Cz| ∗ |x| ≥ |x(t)| , (28)

where

emax =

e⊤

max 1 · · · e⊤

max N

⊤
.

The comparison principle is applied to Eq. (28) in order to obtain an explicit formulation of the upper bound on the state
x(t):

rx(t) = G ∗

F̄ |x0| + emax


≥ |x(t)| . (29)

Here, the impulse response matrix G(t) of the comparison system is given by Eq. (24) and is, hence, the same matrix as
for the continuous control loop. Note that the term F̄ |x0| asymptotically vanishes, whereas emax is constant. Therefore, the
event-based overall system is ultimately bounded if the impulse response matrix G(t) satisfies the condition (23). These
results are summarized in the following theorem.

Theorem 3. The decentralized event-based control system (1), (2), (7), (8), (10) is ultimately bounded if the stability
condition (23) is satisfied.

The stability criterion (23) is a small-gain stability test. This can be seen by replacing the matrix L in the interconnection
relation (2) by γ L with the gain γ ∈ R≥0. Then condition (23) can be reformulated as

λp


∞

0
Ḡxs(t) |L| |Cz| dt


<

1
γ

,

which is satisfied only for sufficiently small γ .
In accordance with Theorem 1, Eq. (23) represents a sufficient condition for the asymptotic stability of the continuous

closed-loop system and for the ultimate boundedness of the event-based control system. In other words, this analysis has
highlighted that the event-based implementation of a decentralized state-feedback controller as proposed in Section 2 does
not impose more restrictions on the interconnection relation (2) than are claimed for asymptotic stability of the continuous
overall system.

4.5. Ultimate bound

Based on the previous analysis results, this section derives explicit bounds on the set X in which the state x(t) of the
event-based overall system remains for large time t . It is assumed that the sufficient stability condition (23) is satisfied.
According to the comparison system (29), the state x(t) of the event-based overall system is bounded by

|x(t)| ≤ rx(t) = G ∗ F̄ |x0| + G ∗ emax.

The first term depends upon the initial state x0 and asymptotically converges to the origin, while the second term does not
vanish. Hence, a limit for rx(t) is given by

rx(t)
t→∞
−→


∞

0
G(t)dtemax = b,
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Fig. 2. Structure of the control input generator with coupling input signal estimator.

where the vector b is referred to as the ultimate bound. Note that a value for the integral of the impulse responsematrix G(t)
follows from Eq. (24):

∞

0
G(t)dt =


In −


∞

0
Ḡxs(t) |L| |Cz| dt

−1

=: 0.

Thus, the ultimate bound b is

b = 0emax (30)

and

x(t) t→∞
−→ X := {x| |x| ≤ b} (31)

holds.

Theorem 4. Consider the event-based overall system (1), (2), (7), (8), (10) that satisfies the stability condition (23). Then
Eqs. (30), (31) define the set X with ultimate bound b.

5. Reduction of feedback communication effort

5.1. Extended control input generator

In the previously presented event-based control approach the control input signal for each subsystem is generated
using the model (7) of a reference system that does not regard the influence of the remaining subsystems through the
interconnections. The deviation between the model state xsi(t) and the plant state xi(t) for subsystem i is represented by
the state-space model

ẋ1i(t) = Aix1i(t) + Eisi(t), x1i(t+k ) = 0

in between two consecutive events, which shows that events generated in the i-th subsystem are caused by the coupling
input si(t). The difference state x1i(t) can be reduced in magnitude and, hence, events can be postponed if the model (7)
takes the effect of the coupling input si(t) into account. This section proposes an extension of the control input generation
by a coupling input signal estimator (Fig. 2). Instead of the model (7) the i-th control input generator now uses the model

ẋsi(t) = Āixsi(t) + Eiŝi(t), xsi(t+k ) = xi(tk), (32)

where ŝi ∈ Rpi denotes an estimation of the coupling input si(t) to the i-th subsystem. Then the deviation x1i(t) = xi(t)
− xsi(t) is described by

ẋ1i(t) = Aix1i(t) + Ei

si(t) − ŝi(t)


, x1i(t+k ) = 0 (33)

for t ∈ [tk, tk+1). For an appropriate estimation ŝi(t), the input generation has the ability to diminish the influence of the
coupling input si on the difference state x1i and, therefore, reduces the number of events compared to the case where no
coupling estimation is applied.

The i-th event generator uses the model (32) in order to check the triggering condition (10), which implies that the
relation (13) still holds with the altered input generation. Since the stability analysis method presented in the previous
section is independent of the particular input generator but only demands the difference state x1i to be bounded for all
i = 1, . . . ,N , the derived stability criterion is applicable to the extended event-based control system.

Subsequently, two different methods for the coupling input signal estimation are presented for which the following
assumption is made.

Assumption 1. It is assumed that for the signals si ∈ Rpi and xi ∈ Rni the relation pi ≤ ni (i = 1, . . . ,N) holds.

Note that the previous assumption is neither required for the event-based control approach without coupling input signal
estimation, nor for presented stability analysis method.
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Fig. 3. Illustration of the dynamic estimation method.

5.2. Static approach to coupling signal estimation

The first estimation approach is based on the assumption that the coupling input is a piecewise constant signal

si(t) = s̄i,k, for t ∈ [tk, tk+1). (34)

The idea of this estimationmethod is as follows: At the event time tk+1 the coupling input estimator determines the constant
signal s̄i,k which, if it has been affecting subsystem i in the time interval t ∈ [tk, tk+1), yields the difference state x1i(tk+1).
This value s̄i,k is then used as estimation ŝi(t) = ŝi,k+1 for the time interval t ≥ tk+1 until the next event occurs.

Considering assumption (34), themodel (33) representing the behavior of the difference state x1i(t) for t ∈ [tk, tk+1) can
be rewritten as

ẋ1i(t) = Aix1i(t) + Ei

s̄i,k − ŝi,k


, x1i(t+k ) = 0,

which yields

x1i(t) =

 t

tk
eAi(t−τ)Ei(s̄i,k − ŝi,k)dτ

= A−1
i


eAi(t−tk) − Ini


Ei(s̄i,k − ŝi,k).

At the event time tk+1 the difference state

x1i(tk+1) = A−1
i


eAi(tk+1−tk) − Ini


Ei(s̄i,k − ŝi,k)

is known and used to determine the new estimation according to

ŝi,k+1 := s̄i,k = ŝi,k +

A−1
i


eAi(tk+1−tk) − Ini


Ei

+
x1i(tk+1), (35)

where (·)+ denotes the pseudoinverse of the indicated matrix, which exists if Assumption 1 is satisfied. Note that if the
coupling input si(t) is actually constant for t ≥ tk, the estimation ŝi,k+1 at the event time tk+1 obtained with (35) coincides
with the actual coupling input signal si(t). This fact implies that the model state xsi(t) and the plant state xi(t) behave
identically for t ≥ tk+1 and no further events will be triggered.

The proposed estimationmethod has low computational cost as new estimations are only determined at the event times.
However, this method carries the assumption that the coupling input signal si(t) is piecewise constant which might be a
rough approximation, particularly if the state of the overall system is far away from the setpoint. Therefore, the next section
introduces a second estimation method that takes the dynamic nature of the coupling input signal into account.

5.3. Dynamic approach to coupling signal estimation

Assume that the behavior of the coupling input si(t) is appropriately characterized in the interval t ∈ [tk, tk+1) by the
linear state-space model

ṡi(t) = Asisi(t), si(tk) = si,k (36)

where Asi is Hurwitz. The i-th coupling input signal estimator then incorporates the model
d
dt ŝi(t) = Asiŝi(t), ŝi(t+k ) = ŝi,k (37)

for t ∈ [tk, tk+1) in order to determine the estimate ŝi(t) that is applied in themodel (32) used by the control input generator.
The idea of this estimation method is illustrated in Fig. 3. Following the same arguments as for the previous estimation

method, the aim is to determine at the event time tk+1 the initial condition si,k of the model (36) such that the signal si(t)
for t ∈ [tk, tk+1) yields the known difference state x1i(tk+1). The value si(tk+1) is then applied as initial condition ŝi,k+1 in
the model (37) to get the estimate ŝi(t) for t ≥ tk+1.

To determine si,k consider the controlled subsystem for the coupling input (36)

ẋi(t) = Aixi(t) − BiKixsi(t) + Eisi(t), xi(0) = xi0 (38a)
ṡi(t) = Asisi(t), si(0) = si,0 (38b)
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and the control input generator with the coupling input (37)

ẋsi(t) = Āixsi(t) + Eiŝi(t), xsi(t+k ) = xi(tk) (39a)
d
dt ŝi(t) = Asiŝi(t), ŝi(t+k ) = ŝi,k. (39b)

The difference between the behavior of the systems (38) and (39) in the interval t ∈ [tk, tk+1) is represented by the state-
space model

d
dt


x1i(t)
s1i(t)


=


Ai Ei
0 Asi

 
x1i(t)
s1i(t)


,


x1i(t+k )

s1i(t+k )


=


0

si,k − ŝi,k


,

where s1i = si − ŝi. This model yields

x1i(t) =

Ini 0

 
x1i(t)
s1i(t)


=


Ini 0


eRi(t−tk)


x1i(t+k )

s1i(t+k )


(40)

with

Ri =


Ai Ei
0 Asi


.

As 
x1i(t+k )

s1i(t+k )


=


0
Ipi


(si,k − ŝi,k)

holds, since x1i(t+k ) = 0 is true for all k ∈ N0, from Eq. (40)

x1i(t) =

Ini 0


eRi(t−tk)


0
Ipi


(si,k − ŝi,k)

follows, which reflects the relation between the difference si,k − ŝi,k and the difference state x1i(t). At the event time tk+1
the known difference state x1i(tk+1) is used to determine si,k:

si,k = ŝi,k +

Hi(tk+1 − tk)

+x1i(tk+1) (41)

where

Hi(tk+1 − tk) =

Ini 0


eRi(tk+1−tk)


0
Ipi


.

The pseudoinverse of the matrix H(·) exists if Assumption 1 is fulfilled and the matrix H⊤H has full rank. The new initial
condition for the model (37) is given by

ŝi,k+1 = eAsi(tk+1−tk)si,k. (42)

At time t = 0 the coupling input estimators are initialized with

ŝi,0 = 0, for all i = 1, . . . ,N.

In summary, the proposed coupling input estimator incorporates the model (37). At the event time tk, the state of this
model is reset according to Eqs. (41), (42) for which only the difference state x1i(tk) needs to be known.

In general, the dynamics of the coupling input signal si(t) is only approximately represented by the model (36) which
makes the matrix Asi a design parameter. The more accurately the coupling input signal si is estimated the less the model
state xsi deviates from the plant state xi and, thus, fewer events are triggered. A good choice of thematrix Asi can be obtained
by first identifying that subsystem (hereafter referred to as subsystem j) that has the largest impact on subsystem i and then
set Asi = LijCzjĀj


LijCzj

+.

6. Example

6.1. Thermofluid process

The proposed decentralized event-based control approach is now applied to a thermofluid process depicted in Fig. 4. The
process consists of two batch reactors T1 and T2 each of which is fed by the water supply S via the valves V1 and V2. The
inflow can be controlled by means of the opening angles uV1 and uV2 of the valves. The outflow from T1 and T2 to W1 or W2,
respectively, is constant. The temperature in reactor T1 can be reduced by means of the cooling unit and can be increased
in reactor T2 by means of the heating rods using the control signals uC or uH, respectively. Both reactors are defined as
subsystems which are coupled through flows from T1 to T2 and vice versa. The strength of these couplings depends on the
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Fig. 4. Thermofluid process.

opening angles of the valves VL1 and VL2. The control aim is to keep the temperature ϑ , measured in Kelvin and level l of the
liquid, measured in centimeters, constant in both reactors, using decentralized event-based controllers.

With the states
x1 =


lT1 ϑT1

⊤
, x2 =


lT2 ϑT2

⊤

and control inputs

u1 =

uV1 uH1

⊤
, u2 =


uV2 uH2

⊤

the system is described by the linearized state-space model (1) with

A1 = 10−3


−5.74 0
−34.5 −8.58


, A2 = 10−3


−5.00 0
39.2 −5.58


B1 = 10−3


2.30 0
0 −38.9


, B2 = 10−3


2.59 0
0 35.0


E1 = 10−3


2.42 0
43.9 5.44


, E2 = 10−3


2.85 0

−46.5 5.58


Cz1 =


1 0
0 1


, Cz2 =


1 0
0 1


which is valid around the setpoint x̄1 =


0.33 295

⊤ and x̄2 =

0.34 300

⊤, where the level and the temperature are
measured in m or K, respectively. A symmetric interconnection between both subsystems is modeled by the relation (2)
with

L =


0 L12
L21 0


= κ


0 Iq1
Iq2 0


,

where κ ∈ R≥0 represents a coupling parameter that is related to the opening angles of the valves VL1 and VL2. The
decentralized state-feedback controller K = diag (K1,K2) with

K1 =


7.280
0.89 −0.08


, K2 =


7.73 0
1.12 0.05


ensures stability of the decoupled subsystems, i. e. for κ = 0. For the event-based implementation of this controller the
event thresholds

ē1 = ē2 = 0.5
are chosen.

6.2. Stability analysis of the thermofluid process

The following paragraph investigates the stability of the event-based overall system. The stability test (23) fails for
interconnections that are larger than the critical value κcrit = 1.68. The analysis of the eigenvalues of the continuous control
loop reveals that the overall system in fact becomes unstable for κ ≥ 1.69 = κ̃crit which, according to Theorem 1, implies
instability of the event-based control loop. The fact that κcrit ≈ κ̃crit shows that the small-gain test (23) yields excellent
results if the impulse response matrices are nearly non-negative such that the |·|-operator has minor effect on the analysis
result.

6.3. Simulation results

The behavior of the event-based overall system is now investigated for interconnections with κ = 1.5 and initial
condition

x1(0) =

0.05 5

⊤
, x2(0) =


−0.05 −5

⊤
.
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Fig. 5. Behavior of the event-based control system.

Fig. 6. Behavior of the event-based control system with coupling signal estimation.

Fig. 5 depicts the simulation results for the case where no coupling input estimator is applied in the control input generator.
The left-hand side shows the trajectories of the level lT1 and temperature ϑT1 (first and second figure from top) of the liquid
in reactor T1 and the right-hand side gives the respective trajectories of the level lT2 and temperature ϑT2 in reactor T2. The
solid lines represent the plant states and the dashed lines the model states. The model state in each subsystem is reset after
every event. The generated events are symbolized by the stems at the bottom of the figure. In this example 10 events are
triggered solely caused by a difference between the temperatures of the plant and the model. This is due to the fact that the
symmetric interconnection has no influence on the behavior of the reactor levels.

The advantage of the dynamic coupling input signal estimation that was presented in Section 5.3 is illustrated in Fig. 6,
which shows the behavior of the overall event-based control system for the same coupling strength and initial condition as
in the previously investigated case. The left-hand side of Fig. 6 depicts the trajectories of the level lT1 and temperature ϑT1
of the liquid in reactor T1 as well as the coupling input signals s1(t) and s2(t) (solid lines) and its estimates ŝ1(t) or ŝ2(t)
(dashed lines), respectively. The right-hand side of Fig. 6 shows the corresponding signals of the reactor T2.

For the coupling input estimation for both subsystems the model (37), (41), (42) is used with

As1 = L12Cz2Ā2 (L12Cz2)
+

= Ā2,

As2 = 1.6 · L21Cz1Ā1 (L21Cz1)
+

= 1.6 · Ā1.

The simulation results show that by including this estimation into the control input generation the total number of events
can be reduced significantly compared to the case without estimation. Besides the initial events, only one event is triggered
in each event-based control loop. After the second event has been triggered in each of the event-based control loops, the
estimations ŝ1(t) and ŝ2(t) approximate the actual coupling signals s1(t) or s2(t), respectively, with sufficient precision,
such that the model states almost coincide with the plant states and, hence, no further event is generated.
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Fig. 7. Behavior of the event-based control system in the experiment.

Note that the factor 1.6 for the choice of the matrix As2 was used in order to further improve the dynamic coupling input
signal estimation. For the choice As2 = Ā1, two more events would have been triggered in the second subsystem.

6.4. Experimental evaluation

Fig. 7 illustrates the experimental results of the investigation of the event-based state-feedback system with dynamic
coupling input signal estimation for interconnections with κ = 1. In comparison with Fig. 6, in can be observed that in
the experiment three more events are triggered in the second subsystem. The difference between the simulation and the
experiment mainly rests on model uncertainties. This is also the reason for the deviation between the plant state and the
model state of the level lT1 in reactor T1. Nevertheless, the experiment shows that the event-based state-feedback approach
works well together with the dynamic coupling input signal estimation and, moreover, is robust with respect to model
uncertainties.

7. Conclusion

The paper has presented a new method for decentralized event-based control together with two stability tests showing
that continuous decentralized controllers can be emulated by event-based controllers with arbitrary accuracy if the event
generators and the control input generators are designed for the isolated subsystems by means of the method described
by [13]. If the continuous system is asymptotically stable, the event-based system is ultimately bounded, where the bound
depends upon the event thresholds.
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