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Abstract: In event-based control the feedback link within a control loop is only closed when an
event indicates the need for information exchange among the sensors, controller and actuators
to maintain a required loop performance. The event-based control loop is a hybrid dynamical
system, which is characterized by a sequence of continuous state flows and discontinuous state
jumps at the event times. This paper analyzes the stability of interconnected decentralized event-
based control loops where events are triggered asynchronously. A stability criterion is derived
using the comparison principle. It is shown that conditions that are sufficient to prove the
stability of the continuous control system imply ultimate boundedness of the event-based state-
feedback loop. The conservatism of the proposed stability test is evaluated for a thermofluid
process.

1. INTRODUCTION

1.1 Event-based control

The event-based control paradigm aims at reducing the
usage of the feedback link within a control loop to time
instants at which an event indicates the need for an in-
formation exchange between sensors, controller and actu-
ators in order to retain a desired closed-loop performance.
The current output measurements are used to update
the control input only at the event times, denoted as tk,
where k ∈ N0 is the event counter. The closed-loop system
is a hybrid dynamical system the behavior of which is
characterized by a continuous flow of the state between
consecutive events and state resets at the event times, as
explained by Donkers and Heemels [2010].

This paper analyzes the stability of N interconnected
event-based state-feedback systems (Fig. 1). The overall
system consists of

• N subsystems and their physical interconnections,
• N event generators (EG) that detect the trigger times
tk and

• N control input generators (CIG) each of which
generates the control input in a decentralized manner
using the received information at time tk.

In Fig. 1 the solid lines represent continuous information
transmissions, whereas the dashed lines indicate a commu-
nication that only occurs at the event times tk.

The subsystem i ∈ N = {1, . . . , N} is described by the
linear state-space model

ẋi(t) = Aixi(t) +Biui(t) +Eisi(t), xi(0) = xi0 (1a)

zi(t) = Czixi(t), (1b)
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where xi ∈ R
ni denotes the plant state, ui ∈ R

mi the
control input, si ∈ R

pi the coupling input and zi ∈ R
qi

the coupling output. The subsystems are interconnected
according to the relation

s(t) = Lz(t) (2)

with

s(t) =
(

s
⊤
1 (t) . . . s⊤N (t)

)⊤
and

z(t) =
(

z
⊤
1 (t) . . . z⊤

N (t)
)⊤

. (3)

As the event-based state-feedback controllers are de-
signed under the assumption of vanishing interconnections
(si = 0), the isolated event-based control loops are stable.
The objective of this paper is to analyze under what
conditions on the interconnection L, the stability of the
subsystems with continuous decentralized control implies
the stability of the event-based overall system.

1.2 Literature review

The analysis of interconnected event-based control loops
has been addressed only in a few publications. In Wang
and Lemmon [2008, 2010] and De Persis et al. [2011] the
event-triggering conditions for the interconnected subsys-
tems were defined such that a desired decay of a Lya-
punov function for the overall system is guaranteed. These
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Fig. 1. Interconnected event-based control loops



approaches were shown to work for weakly coupled sub-
systems. Donkers and Heemels [2010, 2012] studied inter-
connected event-based control loops within the framework
of impulsive systems, leading to stability conditions in
the form of linear matrix inequalities. Mazo and Tabuada
[2010] proved the interconnected event-based system to
be input-to-state stabilizable under the requirement of
synchronized measurements in all components. This work
was extended by Mazo and Cao [2011] in order to allow for
asynchronous updates, meaning that the event generation
in one component of the event-based control loop only
causes the update of sensor and/or actuator information
in this and no other component.

All the above cited works have in common that a zero-
order hold is used to keep the control input constant
between two consecutive events. In contrast to that, this
paper proposes a design approach that follows the idea
of Lunze and Lehmann [2010] and yields control inputs
with exponential flow. The presented analysis of the event-
based overall system uses the comparison principle rather
than Lyapunov functions for the stability test.

1.3 Outline of the paper

A state-feedback approach to decentralized event-based
control is presented in Sec. 2. The stability of the com-
posite system is analyzed in Sec. 3, where the comparison
principle is used to derive a criterion to test the stability
of the event-based overall system in dependence upon the
physical interconnections. The main result of the paper is
presented in Theorem 2 saying that the event-based overall
system is ultimately bounded if the interconnections sat-
isfy the same constraints that also guarantee asymptotic
stability in the case of continuous state-feedback control.
This stability condition is generalized in Sec. 4 which
shows that the asymptotic stability of the continuous
system implies ultimate boundedness of the event-based
system. Section 5 illustrates the behavior of the decentral-
ized event-based control scheme and the analysis results
using the example of a thermofluid process.

1.4 Notation

For a scalar s, |s| denotes the absolute value. For vectors
and matrices the |·|-operator applies to every element.
||x||∞ represents the uniform norm of x. λp(A) denotes
the Perron root of the matrix A. The asterix ∗ symbolizes
the convolution-operator, e. g.

G ∗ u =

∫ t

0

G(t− τ)u(τ)dτ.

A = diag (Ai) denotes a block diagonal matrix having
a main diagonal that consists of the matrices Ai with
i = 1, . . . , N .

2. DECENTRALIZED EVENT-BASED CONTROL

This paper analyzes the interconnected system shown
in Fig. 1, where the control input generators and event
generators for the subsystems are designed by using the
method of Lunze and Lehmann [2010], which is applied
here for the isolated subsystems

ẋi(t) = Aixi(t) +Biui(t), xi(0) = xi0 (4)

for all i ∈ N .

2.1 Control input generator

The i-th control input generator incorporates a model

ẋsi(t) = Āixsi(t), xsi(t
+
k ) = xi(tk) (5)

of the decoupled continuous control loop, where xsi ∈ R
ni

denotes the model state. It is assumed that a state feed-
back gain Ki exists such that the matrix

Āi = (Ai −BiKi)

is asymptotically stable. In (5) t+k represents the right limit
of the event time tk at which the state of the model (5)
is reset to the current plant state xi(tk). The model
state xsi(t) is used to generate the control input ui(t) to
subsystem i according to

ui(t) = −Kixsi(t). (6)

2.2 Event generator

The event times tk are determined in a decentralized man-
ner by the event generators of the subsystems. Consider
the i-th isolated subsystem (4). The application of the
control input (6) yields the event-based closed-loop system

ẋi(t) = Aixi(t)−BiKixsi(t)

= Āixi(t) +BiKi (xi(t)− xsi(t)) . (7)

Āi is stable and the behavior of (7) only depends upon
the difference state

x∆i(t) = xi(t)− xsi(t), (8)

which should be bounded by means of the event genera-
tion. An event is triggered in the i-th subsystem whenever
the relation

||x∆i(t)||∞ = ||xi(t)− xsi(t)||∞ = ēi (9)

holds, where ēi ∈ R+ denotes the event threshold for
subsystem i. At this time tk the current plant state xi(tk)
is transmitted to the i-th control input generator and
the state xsi of the model (5) used in both generators
of subsystem i is reset.

Due to an initial reset of the model states xsi(0) at time
t = 0, x∆i(0) = 0 holds for all i ∈ N . In addition,
each state reset causes x∆i(t

+
k ) = 0, which implies the

boundedness of the difference state (8) according to

|x∆i(t)| ≤ (ēi . . . ēi)
⊤
= ei, ∀ t ≥ 0, (10)

where ei is a vector of dimension ni.

2.3 Decentralized event-based control system

The event-based overall system consists of

• the plant (1), (2),
• N control input generators (5), (6) and
• N event generators each of which incorporates a
model (5) of the corresponding subsystem and trig-
gers an event whenever the condition (9) is satisfied.

In the overall system the state updates occur asyn-
chronously since an event in subsystem i causes a reset
in the control input generator and the event generator of
this subsystem only.

Since the decentralized event-based controllers are only
known to stabilize the isolated subsystems, the main
analysis problem to be solved in the next section concerns



the question how large the interconnections between the
subsystems can be such that the stability of the overall
system is guaranteed.

Remark 1. Under the assumption of bounded external
inputs, the event-based state-feedback approach that is
used for the design of the subsystems was shown in
Lunze and Lehmann [2010] to yield a positive minimum
inter-event time. Hence, given a limited number N of
subsystems, the accumulation of infinite state resets in
finite time, i. e. Zeno behavior (cf. Lunze and Lamnabhi-
Lagarrigue [2009]) can be excluded for the event-based
overall system on condition that it is stable.

3. STABILITY ANALYSIS

3.1 Comparison systems

The subsequently presented stability analysis makes use
of comparison systems which yield upper bounds on the
signals of the respective subsystems.

Definition 1. Consider the isolated subsystem (4) that has
the state trajectory

xi(t) = eĀitxi0 +Gxui ∗ ui,

where

Gxui(t) = eĀitBi (11)

is the impulse response matrix. The system

ri(t) = F̄i(t) |xi0|+ Ḡxui ∗ |ui| (12)

with ri ∈ R
ni is called a comparison system of subsys-

tem (4) if it satisfies the inequality

ri(t) ≥ |xi(t)| , ∀ t ≥ 0

for an arbitrary bounded input ui(t).

A method for finding a comparison system is given in the
following lemma.

Lemma 1. (Lunze [1992]). The system (12) is a compari-
son system of the system (4) if and only if the matrices
Fi(t) and Gxui(t) satisfy the relations

F̄i(t) ≥
∣

∣

∣
eĀit

∣

∣

∣
, Ḡxui(t) ≥ |Gxui(t)| , ∀ t ≥ 0

where the impulse response matrix Gxui(t) is defined in
Eq. (11).

3.2 Analysis of the continuous overall system

This section provides a stability analysis for the continuous
overall system with continuous state feedback

ui(t) = −Kixi(t), ∀ i ∈ N . (13)

The controlled subsystems (1), (13) are described by the
state-space models

d
dt
x̂i(t) = Āix̂i(t) +Eisi(t), x̂i(0) = xi0 (14)

zi(t) = Czix̂i(t)

for i ∈ N , where x̂i ∈ R
ni denotes the state of the i-th

continuous feedback loop. The behavior of subsystem i
from input si to state x̂i is given by

x̂i(t) = eĀitxi0 +Gxsi ∗ si
with

Gxsi(t) = eĀitEi. (15)

Hence,

rx̂i(t) = F̄i(t) |xi0|+ Ḡxsi ∗ |si| (16)

with

F̄i(t) =
∣

∣

∣
eĀit

∣

∣

∣
, Ḡxsi(t) = |Gxsi(t)| (17)

is a comparison system for the original system (14).

In order to investigate asymptotic stability of the overall
system, let

rx̂(t) =
(

r
⊤
x̂1(t) . . . r⊤x̂N (t)

)⊤
, x0 =

(

x
⊤
10 . . . x⊤

N0

)⊤

and

F̄ (t) = diag
(

F̄i(t)
)

, Ḡxs(t) = diag
(

Ḡxsi(t)
)

,

which yields

rx̂(t) = F̄ (t) |x0|+ Ḡxs ∗ |s| (18)

with s(t) defined in (3). With the upper bound

|s(t)| ≤ |L| |z(t)|

on the interconnection relation (2), where z(t) is defined
in (3) and

|z(t)| ≤ |Cz| |x̂(t)|

where Cz = diag (Czi), the relation

rx̂(t) = F̄ |x0|+ Ḡxs |L| |Cz| ∗ |x̂| ≥ |x̂(t)|

follows from (18). The last inequality is an implicit bound
on the overall state x̂(t). An explicit statement in terms
of the initial condition is obtained by means of the com-
parison principle, Lunze [1992]. Accordingly,

rx̂(t) = G ∗ F̄ |x0| ≥ |x̂(t)| (19)

holds, where the impulse response matrixG(t) satisfies the
relation

G(t) = δ(t)I + Ḡxs |L| |Cz| ∗G (20)

with δ(t) representing the Dirac impulse. Note that ac-
cording to (19) the continuous system (1), (2), (13) is
asymptotically stable if rx̂(t) converges to zero. To use
this fact as a stability criterion, it has to be shown that
for the impulse response matrix (20) of the comparison
system (19) the condition

∫ ∞

0

G(t)dt < ∞ (21)

holds. Equation (20) yields
∫ ∞

0

G(t) dt =

∫ ∞

0

δ(t)Idt+

∫ ∞

0

Ḡxs |L| |Cz| ∗G dt

= I +

∫ ∞

0

Ḡxs(t) |L| |Cz| dt

∫ ∞

0

G(t) dt,

from which the relation
∫ ∞

0

G(t) dt

(

I −

∫ ∞

0

Ḡxs(t) |L| |Cz| dt

)

= I (22)

follows. Hence, a matrix G(t) satisfying (21) exists if the
condition

λp

(
∫ ∞

0

Ḡxs(t) |L| |Cz| dt

)

< 1 (23)

is fulfilled. The following theorem summarizes the resulting
stability test.

Theorem 1. Consider the decentralized continuous control
loops (1), (13) that are connected over the interconnection
relation (2). If the inequality (23) is satisfied, the overall
system is asymptotically stable.



Remark 2. Note that the stability criterion (23) is a suffi-
cient condition that can be regarded as a small-gain the-
orem. Since norm bounds on the impulse response matrix
of the overall system, as well as on the coupling matrix
L are used, the stability test might fail even if the overall
system is in fact stable.

3.3 Analysis of the event-based overall system

This section extends the previously developed stability
analysis to the event-based control system. Due to the
event-based sampling the state of the overall hybrid sys-
tem cannot be expected to converge asymptotically to
the origin, but to a bounded set X ⊂ R

n. Hence, the
subsequent analysis investigates the stability of the event-
based control system in the sense of ultimate boundedness,
Khalil [2002].

Definition 2. The event-based control system (1), (2), (5),
(6), (9) is said to be globally ultimately bounded (GUB)
if there exists a bounded set X and a time t̄ such that for
all initial states x0 the following relation holds:

∃t̄ : x(t) ∈ X , ∀t ≥ t̄.

The i-th subsystem (1a) with event-based control (5), (6)
is described by the state-space model

ẋi(t) = Āixi(t) +BiKix∆i(t) +Eisi(t),

xi(0) = xi0,

zi(t) = Czixi(t)

which yields the state trajectory

xi(t) = eĀitxi0 +Gxxi ∗ x∆i +Gxsi ∗ si
with

Gxxi(t) = eĀitBiKi

and the state difference x∆i(t) and the impulse response
matrix Gxsi(t) defined in (8) or (15), respectively. An
upper bound on the state xi(t) is obtained by means of
the comparison system

rxi(t) = F̄i(t) |xi0|+ Ḡxxi ∗ |x∆i|+ Ḡxsi ∗ |si| (24)

with

Ḡxxi(t) = |Gxxi(t)|

and F̄i(t) and Ḡxsi(t) given in (17). As the difference
state x∆i(t) is bounded according to Eq. (10) the following
relation holds:

Ḡxxi ∗ |x∆i| =

∫ t

0

Ḡxxi(t− τ) |x∆i(τ)| dτ ≤ emax i

with

emax i =

∫ ∞

0

Ḡxxi(τ)dτ · ei. (25)

Given (25) the comparison system (24) can be reformu-
lated as

rxi(t) = F̄i(t) |xi0|+ emax i + Ḡxsi ∗ |si| .

Note that the difference between the upper bound on the
behavior of the continuous system (16) and the event-
based system (24) is only the additional term emax i

defined in (25), whereas the influence of si(t) on the state
xi(t) remains unchanged.

A comparison system for the overall event-based control
loop is obtained in the same way as for the continuous
system:

rx(t) = F̄ (t) |x0|+ emax + Ḡxs |L| |Cz| ∗ |x| ≥ |x(t)|
(26)

with

emax =
(

e
⊤
max 1 . . . e⊤maxN

)⊤
.

The comparison principle is applied to Eq. (26) in order
to obtain an explicit formulation of the upper bound on
the state x(t):

rx(t) = G ∗
(

F̄ |x0|+ emax

)

≥ |x(t)| . (27)

Here, the impulse response matrix G(t) of the comparison
system is given by Eq. (20) and is, hence, the same
matrix as for the continuous control loop. Note that
the term F̄ |x0| asymptotically vanishes, whereas emax is
non-vanishing. Therefore, the event-based overall system
is ultimately bounded if the impulse response matrix
G(t) satisfies the condition (21) which is true if the
inequality (23) holds. These results are summarized in the
following theorem.

Theorem 2. The decentralized event-based control loop
(1), (2), (5), (6), (9) is ultimately bounded if the stability
condition (23) is satisfied.

In summary, Eq. (23) represents a sufficient condition
for the asymptotic stability of the continuous closed-loop
system and for the ultimate boundedness of the event-
based closed-loop system.

3.4 Ultimate bound

This section derives explicit bounds on the set X in which
the state x(t) of the event-based overall system remains
for large time t. It is assumed that the sufficient stability
condition (23) is satisfied. According to the comparison
system (27), the state x(t) of the event-based overall
system is bounded by

|x(t)| ≤ rx(t) = G ∗ F̄ |x0|+G ∗ emax.

The first term depends upon the initial state x0 and
asymptotically converges to the origin, while the second
term does not vanish. Hence, a limit for rx(t) is given by

rx(t)
t→∞
−→

∫ ∞

0

G(t)dt emax = b,

where the vector b is referred to as ultimate bound. Note
that a value for the integral over the impulse response
matrix G(t) follows from Eq. (22) which yields

∫ ∞

0

G(t)dt =

(

I −

∫ ∞

0

Ḡxs(t) |L| |Cz| dt

)−1

= Γ.

Thus, the ultimate bound b is

b = Γemax (28)

and

x(t)
t→∞
−→ X =

{

x
∣

∣ |x| ≤ b
}

(29)

holds.

Theorem 3. Consider the event-based overall system (1),
(2), (5), (6), (9) that satisfies the stability condition (23).
Then (28), (29) define the set X with ultimate bound b.

4. GENERALIZED STABILITY CONDITION

This section derives an alternative stability condition for
the event-based control loop. It assumes that the con-
tinuous decentralized controller is known to stabilize the



plant (1), (2) whether or not it satisfies the condition (23).
It shows that the event-based implementation of the con-
troller, following the design described in Sec. 2, leads to a
system that is ultimately bounded.

The overall plant is described by the state-space model

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

with x(t) =
(

x
⊤
1 (t) . . .x⊤

N (t)
)⊤

,

A(i, j) =

{

Ai for i = j

EiLijCzj for i 6= j

and B = diag (Bi). Assume that the state-feedback gain

K = diag (Ki) , i = 1, . . . , N, (30)

is designed such that the matrix Ā = (A−BK) is stable.
In the event-based control system the input is generated
by means of the model

ẋs(t) = Āxs(t), xsi(t
+
k ) = xi(tk)

u(t) = −Kxs(t)

which yields the closed-loop system

ẋ(t) = Ax(t)−BKxs(t)

= Āx(t) +BK
(

x(t)− xs(t)
)

. (31)

As the deviation between the plant state xi(t) and the
model state xsi(t) is bounded by means of the event
generation (9) for all i ∈ N ,

||x(t)− xs(t)||∞ ≤ max
i∈N

ēi

follows, which implies ultimate boundedness of the event-
based control loop (31).

Theorem 4. Given a decentralized state-feedback gain (30)
that yields a continuous closed-loop system which is
asymptotically stable. Then the event-based implementa-
tion of this controller in form of the decentralized event-
based control stations (5), (6), that are reset each time
the condition (9) holds, results in an ultimately bounded
system.

Theorem 4 states that the event-based implementation of
a decentralized state-feedback controller as proposed in
Sec. 2 does not impose more restrictions on the inter-
connections between the subsystems than are claimed for
asymptotic stability of the continuous overall system. That
means that any condition that is sufficient to guarantee
asymptotic stability of the continuous system is concomi-
tantly sufficient to ensure ultimate boundedness of the
event-based system.

5. EXAMPLE

5.1 Thermofluid process

The proposed decentralized event-based control approach
is now applied to a thermofluid process depicted in Fig. 2.
The process consists of two batch reactors T1 and T2 each
of which is fed by the water supply S via the valves V1 and
V2. The inflow can be controlled by means of the opening
angles uV1 and uV2 of the respective valve. The outflow
from T1 and T2 to W1 or W2, respectively, is constant. The
temperature in each reactor can be increased by means
of heating rods using the control signals uH1 and uH2.
Both reactors are defined as subsystems which are coupled

T1 T2

T

L

T

L

S uV2

V2V1

P1 P2

uV1

VL1 VL2

uH1 uH2W1 W2

Fig. 2. Thermofluid process

through flows from T1 to T2 and vice versa. The strength
of these couplings depend upon the opening angels of
the valves VL1 and VL2. The control aim is to keep the
temperature ϑ and level l of the liquid constant in both
reactors, using decentralized event-based controllers.

With the states

x1 = (lT1 ϑT1)
⊤
, x2 = (lT2 ϑT2)

⊤

and control inputs

u1 = (uV1 uH1)
⊤
, u2 = (uV2 uH2)

⊤

the system is described by the linear model (1) with

A1 = 10−3

(

−1.45 0
−45.6 −5.34

)

, A2 = 10−3

(

−0.84 0
−38.2 −6.62

)

B1 = 10−3

(

3.61 0
−184 28.7

)

, B2 = 10−3

(

2.01 0
−103 31.6

)

E1 = 10−3 (0 17.5)
⊤
, E2 = 10−3 (0 15.2)

⊤

Cz1 = (0 1) , Cz2 = (0 1)

which is valid around the setpoint

x̄1 = (40 318)
⊤
, x̄2 = (30 308)

⊤

where the level and the temperature are measured in cm
and K, respectively, and

ū1 = (0.19 1.83)
⊤
, ū2 = (0.48 1.10)

⊤

where the first value corresponds to the opening angle
of the respective valve and the second value represents
the number of active heating rods. The interconnection
between both subsystems is modeled by the relation (2)
with

L =

(

0 l12
l21 0

)

, l12, l21 ∈ [0, 1],

where l12 and l21 represent the opening angels of the valves
VL2 or VL1, respectively. The decentralized state-feedback
controller K = diag (K1,K2) with

K1 =

(

4.03 0
25.9 0.12

)

, K2 =

(

9.44 0
30.8 0.32

)

ensures stability of the decoupled subsystems, i. e. l12 =
l21 = 0. For the event-based implementation of this
controller the event thresholds

ē1 = ē2 = 0.5

are chosen.

5.2 Stability analysis of the thermofluid process

The following analysis investigates the stability of the
event-based overall system under the assumption of sym-
metric couplings l12 = l21 = lsym. The evaluation of the



stability test (23) for all possible symmetric couplings
lsym ∈ [0, 1] shows that the test fails for interconnections
that are larger than the critical value lcrit = 0.741. The
analysis of the eigenvalues of the continuous control loop
reveals that the overall system in fact becomes unstable for
lsym ≥ 0.743 which, according to Theorem 4, implies insta-
bility of the event-based control loop. Hence, the stability
test (23) yields excellent results if the impulse response
matrices are largely positive such that the |·|-operator has
minor effect on the estimation of the systems behavior.

Given the coupling lsym = 0.3 for which the stability test
proved the system to be ultimately bounded, the set X is
given by Eq. (29) with ultimate bound

b = (0.46 4.04 0.48 2.50)
⊤

(32)

derived according to (28).

5.3 Simulation results

The behavior of the event-based overall system is now in-
vestigated for the coupling lsym = 0.3 and initial condition

x1(0) = (−5 −1)
⊤
, x2(0) = (5 1)

⊤
.

Figure 3 depicts the simulation results where the left-hand
side shows the trajectories of the level lT1 and temperature
ϑT1 (first and second figure from top) of the liquid in
reactor T1 and the right-hand side gives the respective
trajectories of the level lT2 and temperature ϑT2 in reactor
T2. The solid and the dashed lines represents the plant
states or the model states, respectively. The model state
in each subsystem is reset whenever an event is triggered.
The generated events are symbolized by the stems that are
illustrated in the figures at the bottom. In this example
event generation is solely caused by a difference between
the temperatures of the plant and the model. This is due
to the fact that the symmetric interconnection has no
influence on the behavior of the level in each reactor. The
feedback communication at the indicated event times is
sufficient to control the overall system close to the setpoint.

Figure 4 shows the state trajectories for reactor T1 (left-
hand side) and for reactor T2 (right-hand side). The set X
that follows from the ultimate bound (32) is highlighted in
grey in both plots. The overall system is clearly ultimately
bounded for lsym = 0.3, however, the derived ultimate
bound b is conservative, as the state trajectories converge
close to the setpoint.
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Fig. 3. Behavior of the event-based overall system
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Fig. 4. Ultimate boundedness of the state trajectories

6. CONCLUSION

The paper has presented two stability tests for decen-
tralized event-based control systems both showing that
continuous decentralized controllers can be emulated by
event-based controllers with arbitrary accuracy if the event
generators and the control input generators are designed
for the isolated subsystems by means of the method de-
scribed by Lunze and Lehmann [2010]. If the continuous
system is asymptotically stable, the event-based system is
ultimately bounded, where the bound depends upon the
event thresholds.
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