
April 15, 2020

Phone +49-(0)234 32-24096
Fax +49-(0)234 32-14101

Autonomous and cooperative control
of networked discrete-event systems

Markus Zgorzelski
zgorzelski@atp.rub.de

1 Introduction

A networked discrete-event system is a network of subsys-
tems, each of which includes a technical process Σ̄i together
with a controller and a network unit Σ′i. These subsystems
are interconnected by physical couplings ΣK and by digital
communication links ΣN (Fig. 1) [1]. Important character-
istics of networked systems are the partial autonomy of the
subsystems and a flat architecture, in which there does not
exist any coordinator.

Figure 1: Networked discrete-event system

The autonomy of the subsystems is reflected by the fact
that each subsystem individually solves its local tasks,
which change during runtime. Cooperation among the sub-
systems becomes necessary, if physical couplings or control
specifications have to be resolved by two or more sub-
systems in order to satisfy the local tasks. Hence, the
subsystems change between an autonomous and a coop-
erative operation mode. On the one hand, they are able
to achieve most of their local tasks autonomously without
any communication. On the other hand, if it is necessary,
they participate in satisfying cooperative tasks by adapting
their behaviours while using the communication network.

The aim of this project is to develop design methods for
networked discrete-event systems that enable the subsys-
tems to decide upon local model information when they
have to communicate over a digital communication network.
The following questions have to be answered:

When and what information have to be exchanged by the
subsystems and how should the structure of the commu-
nication network look like?

2 Example: Networked robots

Figure 2 shows two robots, Robot 1 and Robot 2, as two sub-
systems of a networked discrete-event system. Figure 2(a)

describes the situation, in which Robot 1 has the local task
to install car doors onto a car body, while Robot 2 has
the task to install bonnets. The tasks are given by the car
parts using radio-frequency identification (RFID) tags and,
thus, appear in arbitrary order. It is clear to see that the
local tasks in Fig. 2(a) are achieved autonomously by the
robots, and, thus, the subsystems need only local model
information.

Figure 2: Autonomous and cooperative control

Figure 2(b) shows the installation of the car window.
Robot 2 applies glue on a car window, while Robot 1 is
grabbing and holding the car window. This cooperative
task is described by a synchronous state transition in both
robot models that have to be executed synchronously.

As can be seen in Fig. 2(c), Robot 2 needs a gluing tool
to accomplish the cooperative task in Fig. 2(b). Therefore,
both robots cooperatively have to exchange the tool of
Robot 2 from grabbing to gluing, which is modelled by
another synchronous state transition. Both synchronous
state transitions have to be executed in the correct order,
which has to be determined by the robots without any
coordinator.

A deadlock between the robots occurs if Robot 1 holds
the window for gluing, while Robot 2 waits for exchanging
the tool from grabbing to gluing. Obviously, the robots
have to exchange information to install the car window
cooperatively.

3 Local and cooperative tasks

The subsystems have to solve tasks which are modelled

by local target states (zF1, . . . , zFI) ∈
∏I

i=1 Zi, for each
technical process Σi independently of each other. They
are solved if the subsystems execute state trajectories

(Z1(0 . . . ke), . . . , ZI(0, . . . , ke)) from their current state

(z1, . . . , zI) ∈
∏I

i=1 Zi into each target state (zF1, . . . , zFI)
(Fig. 3(a)).

The cooperative tasks are modelled by synchronous state
transitions γ, which are defined by pairs of state transitions
from the predecessor state (pre-state) into the successor
state (post-state) between two subsystems, which is shown
in Fig. 3(b).

Figure 3: Local and cooperative tasks

To solve the local and cooperative tasks, the subsystem
have to execute compatible state trajectories into their
target states, which include a deadlock-free sequence of
synchronous state transitions (Fig. 3(b)). The problem to
be solved occurs if the subsystems execute incompatible
state trajectories leading into a deadlock. Then the subsys-
tems do not execute the same synchronous state transitions
and cannot reach their target states.

4 Cooperative control

The aim of this project is to design a set of digitally con-
nected network units Σ′i (Fig. 1), which detect incompatible
states trajectories and replace them by compatible ones to
reach the local target states zFi (Fig. 3(b)). This control
method is denoted as cooperative target-state control.

To enable the network unit to find compatible state
trajectories the composed overall model is needed. However,
the overall model does not exist, because the subsystem
models are distributed among the subsystems. Obviously,
only the cooperative behaviour of the networked discrete-
event system has to be known being modelled by a reduced
overall model, which can be applied to find the compatible
state trajectories instead of the original overall model [2].

The reduced overall model is calculated by the composi-
tional model abstraction method from [2] as shown in Fig. 4.
First, each subsystem model Σ̄i is simplified individually
to the reduced subsystem model Σ̄i/∼. Second, the reduced

subsystem models Σ̄i/∼ are composed to the abstracted

overall model Σ̄/∼.
To solve the cooperative target-state control problem the

subsystems are steered through the abstracted state trajec-
tory in the reduced overall model Σ̄/∼ from the abstracted

Figure 4: Compositional model abstraction and controller
design

current state into the abstracted target state, which cor-
responds to compatible state trajectories in the original
models (Fig. 5).

As an example, in Fig. 5 the subsystems Σ̄1 and Σ̄2 have
to be steered from (z1, z2) into (zF1, zF2). The compatible
state trajectories including γ1 before γ2 are determined by
the abstracted state trajectory in the reduced overall model
Σ̄/∼ from the abstracted current state ([z1], [z2]) into the
abstracted target state ([zF1], [zF2]).

Figure 5: Cooperative control

The subsystems Σ̄i are steered through the abstracted
state trajectory by a new cooperative controller ΣC/∼, which

is designed for Σ̄/∼ as shown in Fig. 4 [3]. If incompatible
state trajectories are detected by the network units Σ′i,
the distributed components ΣCi/∼ of ΣC/∼ are used by Σ′i
to select compatible state trajectories for their controlled
subsystems Σ̄i according to the abstracted state trajectory
in Σ̄/∼. Obviously, the network units Σ′i have to use the
communication network ΣN in these situations.

References
[1] M. Zgorzelski and J. Lunze. A method for the synchronisation of

networked discrete-event systems, 13th International Workshop
on Discrete Event Systems, Xi’an 2016, pp. 444-451

[2] M. Zgorzelski and J. Lunze. A model abstraction method for
networked discrete-event systems, 17th European Control Con-
ference, Neaples 2019, pp. 3976–3983

[3] M. Zgorzelski and J. Lunze. Cooperative tracking control in
networked discrete-event systems, 6th International Conference
on Control, Decision and Information Technologies 2019, Paris
2019, pp. 115-120

