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1 Introduction and the controller dynamics are adjusted to the current faul
: : : (2].
The recently increasing complexity of man-made systems in-
creases their vulnerability for faults and malfunctiond. tie ool ok, ety oot
same time, requirements for system dependability are surg- w 2 ”
ing as a consequence of, for example, tightening enviroamen =™ 71 ™ —Aﬁ‘\'\>
tal regulations. Maintaining system dependability at resi . . r | Recon: -
levels by improving individual components is challengimgia *Clggﬁlélllélli» fé\ b5 ¥ ™ ﬁgtur(iij Ly e R Y
S controller o+

expensive. Feedback control is an ideal technology for |n
creasing the system dependabiliBontrol reconfiguratiorde- M Al -
notes a class of solutions to the fault-tolerant controbjem, 3 3|
where the closed-loop structure and the controller dynamic
are actively adjusted in response to component malfunstion

The goal of the control reconfiguration consists in preventi  Figure 2: Control reconfiguration restructures the loop.
component-level faults and failures into system-levéufais.

ly
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An important reconfiguration problem arises after actutatibr
ures (Figure 2). Control reconfiguration must orchestrage t
2 Fault-tolerant control functioning actuators in order to replace theeet of faulty or
failed actuators.
Fault-tolerant control (FTCHescribes techniques for adapting
control loops to faulty plants by suitable use of the avddab
redundancy [1]. It aims at preventing component faults, cod} Fault-hiding framework
ponent fall_ures or subsystem faults from causing systeh_n f% the fault-hiding approach, the faulty closed-loop syste
ures. Passive FTCsuch as robust control, denotes teChmqu%Saugmented by placing a reconfiguration blazk between
to let the controller tolerate a set of possible faults. Hesve

the set of faults that can be tolerated without active cdietro faulty pI_antZPf and controlietzc (Figure 3). The basu_: ap-
. . o proach is valid for actuator as well as sensor faults alike. B
re-adjustment is usually limited.

. . . dequate choice of the reconfiguration block structurerahe
Active FTCdenotes techniques to achieve fault tolerance gnfigured planEe, = (Zpr, 2r) is described by the sam¢dl
. . . - r— )
chang!ng the control qup after fault-time (Figure !.:)ault O.“' odel as the nominal plant. This property is cafi@dlt-hiding
agnosis(FDI) seeks to find out whether the plant is subject e fault-hiding property permits the nominal controllertie
to a fault and to identify the fault. The fault diagnosis sigp ke

: " kept in the reconfigured closed-loop system. From an imple-
followed by a controller adjustment step, callamhtrol recon mentation perspective, the interconnection = (Zk, Zc) is the

figuration reconfigured controller. Dual approaches for actuator and s
o sor faults in linear systems based on fault-hiding were Heve
- : : i oped in [9].
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Control reconfiguration changes both the loop structurelaad
controller dynamics in response to faults. After reconfegur . . o
tion, the signals measured and manipulated by the controlfdgure 3: Reconfiguration block hiding faults from conteol|
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5 Results for actuator and sensor faults (f2), and of the pumpips (f3). All methods developed so far

L . have been successfully applied to this process [7].
The problem that must be solved consists in finding suitable

structures for the reconfiguration block, and determinitsg i
free parameters. The general structure of the reconfigura-
tion solution is shown in Figure 4. The reconfiguration block
2R = (2s,2a) consists of avirtual sensorXs and avirtual ac-
tuator 2a.

The virtual sensoZs provides an estimate of the faulty plant
state, which is used by the virtual actuator. The lattera@iosta
reference models of the nominal plankp, and state feedback
and control feedforward in order to keep th&eliencex, be-
tween nominal and faulty plant state small. In the case eflin

or Hammerstein systems and pure actuator faults, the gtauct
shown in Figure 4 is simplified by combining the virtual sen-
sor and the virtual actuator dynamics into a single dynalmica
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