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1 Introduction

Mechatronic systems exhibit an ever increasing level of
automation and complexity. A malfunction of such sys-
tems may cause significant damage, pollution or danger
to humans. Supervision is mandatory in order to main-
tain safety and reliability, and to fulfill legal requirements.
The task of diagnostic algorithms is to detect and isolate
faults that may affect the system. Fault detection is con-
cerned with verifying whether or not a system is faulty.
Fault isolation tries to find the faulty component in the
system.

Mechatronic systems consist of various components, in-
cluding actuators, sensors, and control units. Due to the
size of those systems it is no longer advisable to design
diagnostic functions that are based on heuristic analysis
or expert knowledge. Instead, systematic methods have
to be developed in order
• to analyze whether or not faults are diagnosable, i.e.,

detectable or isolable, respectively, and
• to build diagnostic algorithms.

The project aim is to provide a comprehensive fault isola-
tion procedure which tackles the two problems.

2 Model-based fault diagnosis

Fault diagnosis of a system Σ is possible only if the knowl-
edge about the system includes redundancies. In model-
based diagnosis, the mathematical model together with
the known input and output signals of the system pro-
vides redundant information (Fig. 1). A first step towards
a diagnosis algorithm is to perform a diagnosability anal-
ysis, i.e. to analyze which part of the system contains
redundancies.
Structural analysis has become popular in model-based

diagnosis to analyze diagnosability [1, 3]. It is based on
graph theory and identifies over-determined subsets of
equations within the system model which include redun-
dancies and make fault diagnosis possible.

Diagnostic algorithms use the known input and output
signals of a system to compute residuals (signal r(t) in
Fig. 1) that indicate whether the system behavior is con-
sistent with the model of the non-faulty system. By evalu-
ating these residuals appropriately, the fault isolation task
can be accomplished.

Most literature deals with particular aspects of fault di-
agnosis, i.e., either diagnosability analysis or residual gen-
eration or residual evaluation. The aim of the present
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Figure 1: Diagnostic algorithm

project is to provide a concept that leads through the en-
tire process of building a fault diagnoser for a given mecha-
tronic system. The starting point is a mathematical de-
scription of the system by means of a state space model.
The result shall be a diagnoser that is able to detect and
isolate faults of a predefined fault set F .

3 A comprehensive fault isolation
procedure

3.1 Structural diagnosability analysis and
residual evaluation logic

It is assumed that the system can be described by a linear
state space model

Σ :

{
ẋ(t) = Ax(t) + Bu(t) + Esf(t), x(0) = x0,

y(t) = Cx(t) + Eof(t),

with state x(t) ∈ Rn, input u(t) ∈ Rm, measurement
y(t) ∈ Rp, and a fault vector f(t) ∈ Rl. The evolution of
f(t) is unknown, but the matrices Es and Eo are supposed
to be known and describe how the faults f1(t), . . . , fl(t)
affect the system.

The first task is to analyze diagnosability of the system,
i.e., to identify subsets of equations within Σ which con-
tain more equations than unknown variables. For this,
equations and variables are subsumed in the constraint
set C and the variable set Z, respectively. A bipartite
graph shows the relations between the elements of C and
Z, see Fig. 2. In such a graph, equations are represented
as bars and variables as circles. White, gray, and red cir-
cles correspond to unknown, known, and fault variables,
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Figure 2: Example of a bipartite structure graph

respectively. An edge is drawn from an equation vertex to
a variable vertex if the variable is contained in the equa-
tion. With a Dulmage-Mendelsohn decomposition, the
unique maximal subset C+ ⊆ C can be computed which
has the property that it is over-determined. Within C+,
further over-determined subsets Pκ ⊆ C+, κ = 1, . . . , k,
can be computed [2]. All over-determined subsets are sub-
sumed in the set P ⊆ 2C .

The dependencies of sets P on faults f are summarized
in the Boolean fault signature matrix S = (sκj). If fj is
contained in an equation of Pκ, then sκj is 1, else it is 0.
An example of a fault signature matrix is given in Fig. 3.

The signature of a fault fj is given by the jth column sj
of the matrix. A fault fj is called structurally detectable if
sj 6= 0, and structurally isolable if si 6= sj for all i 6= j.

S =

f1 f2 f3 f4 f5 f6 f7 f8 f9
P1 1 0 0 1 1 1 1 1 0
P2 0 1 1 0 1 1 1 1 0
P3 1 1 1 0 1 0 0 0 0
P4 1 1 0 1 0 1 0 0 0

Figure 3: Example of a fault signature matrix

It is assumed that from a selection Q ⊂ P, |Q| = q, of
over-determined subsets, residuals can be computed. Each
residual rκ(t), κ = 1, . . . , q, is expected to react on faults
according to the fault signature matrix: If sκj = 1, then
rκ(t) 6= 0 in case that fj(t) 6= 0. In all other situations,
rκ(t) will converge to zero.

For each rκ(·), a norm ‖·‖κ and a threshold εκ > 0 has to
be chosen, and a Boolean vector r̄(t) = (r̄1(t), . . . , r̄k(t))T

is defined as follows:

r̄κ(t) = 0, if ‖rκ(t)‖κ ≤ εκ,
r̄κ(t) = 1, if ‖rκ(t)‖κ > εκ.

The vector r̄(t) is compared with the columns sj of
the fault signature matrix online and each column which
matches the residual vector provides a fault candidate.
Thus, a set of fault candidates

F∗(t) := {fj | sj = r̄(t)}

is determined by the fault diagnoser.

3.2 Observer-based residual generation

Once the selection Q ⊂ P is made, a residual has to be
computed from each Pκ ∈ Q. This shall be done by state

estimation. Therefore, a state space model

Σκ :

{
ẋκ(t) = Aκxκ(t) + Bκuκ(t), xκ(0) = x

κ,0,

yκ(t) = Cκxκ(t)

has to be set up from the equations of Pκ for each κ =
1, . . . , q. An observer has to be constructed for this sub-
system which is of the form

Oκ :

{
˙̂xκ(t) = Aκx̂κ(t) + Bκuκ(t) + Lκrκ(t),
rκ(t) = yκ(t)−Cκx̂κ(t).

with a feedback matrix L which has to be chosen such
that Oκ is an asymptotically stable system. The observer
delivers the residual rκ(t) which is used for fault diagnosis.

3.3 Systematic construction of a fault di-
agnoser

Given a state space model of a mechatronic system, the
comprehensive diagnosis approach can be summarized as
follows:

1. Set-up of a structural model (cf. Fig. 2)
2. Computation of all over-determined subsets of C+
3. Computation of the fault signature matrix S
4. Selection of a subset Q of over-determined sets
5. Set-up of observer-based residual generators for all
P ∈ Q

Result. The result is a bank of observer-based residual
generators which are designed to estimate the state of the
respective subsystem Σκ and to provide a residual. The
residual vector r̄(t) is evaluated on-line and compared with
the fault signature matrix SQ in order to provide a set F∗
of fault candidates that may have occurred.

4 Discussion

There are several critical points in the above procedure.

1. How to choose the subset Q within P?
2. How to verify whether a set P ∈ P defines a state

space model?
3. How to assure that a residual shows the behavior as

predicted by the fault signature matrix?
4. How to deal with nonlinear and hybrid systems?

Future research will cover these topics.
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