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1 State observation

A dynamical systemS is modelled in discrete-time:

x(k + 1) = Ax(k) + B u(k), (1)

y(k) = C x(k) + D u(k). (2)

The aim of state observation is to reconstruct the value of the
state vectorx(k), 0 ≤ k ≤ k̄, given the model of the process
and its input-output sequence over a given time horizon[0, k]:

U = U(0 . . . k̄) =
(

u(0),u(1), . . . ,u(k̄)
)

,

Y = Y (0 . . . k̄) =
(

y(0),y(1), . . . ,y(k̄)
)

.

This is described in [1] and shown in Fig. 1. The most common
Luenberger observer is designed such that

lim
k→∞

x̂(k) = x◦(k). (3)
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Figure 1: Observation of dynamical systems

2 Observation of uncertain systems

The state observation approach supposes an exact knowledgeof
both the modelS and the input-output sequences. This is never
the case in practice because the accuracy of process models is
limited and measurements are affected by noise or measure-
ment error. The process knowledge isuncertain.
At first, the project focuses on measurement errors. Thus, the
true input and output sequences(U◦,Y ◦) are unknown, and
only biased sequences(Ũ , Ỹ ) are measured. The error causes
property (3) to never be attained. In this project an upper
bounds for this error are assumed known:

|ũ(k) − u◦(k)| ≤ eu(k) and |ỹ(k) − y◦(k)| ≤ ey(k).

Therefore, at each time step, two sets

U(k) = {u ∈ R
m | |ũ(k) − u| ≤ eu(k)} (4)

and Y(k) = {y ∈ R
r | |ỹ(k) − y| ≤ ey(k)} (5)

exist which are guaranteed to include the true input and output.
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Figure 2: State trajectories for an uncertain system

As shown in Fig. 2, the state trajectory reconstructed for an
uncertain system is not unique. Even if the initial state was
exactly known (i.e. x(0) = x0), input uncertainty allows for a
bundle of state trajectories. Afterk time steps, the state is only
known to belong to a setXx0

(k). This uncertainty increases
when the initial state is uncertain as well (i.e. x(0)∈X0).
Furthermore, standard observers do not offer any information
on the observation errore(k) = |x(k) − x̂(k)|.

These drawbacks motivate the search of an alternative solution
to the state observation of uncertain systems. As sets of input
and output are considered, and because of the intrinsic charac-
teristics of such systems, it is proposed to determine a setX of
states which is guaranteed to include the true state:

x◦(k) ∈ X (k). (6)

This task is referred to as a set-membership state observation,
or state-set observation.

3 Algorithm for set observation

This section briefly describes the state-set observation algo-
rithm used in this project. A graphical representation of the
steps involved in this algorithm are shown in Fig. 3 for a
second order system. A polytopic set representation was used
for the implementation of the algorithm. Further details are
found in [2].

Given:
• the model(A,B,C,D) of a processS,
• measurements sequences(U ,Y )(0 . . . k̄),
• uncertainty bounds on the input and output(eu,ey).
• an a-priori state-setX0 (possiblyX0 = R

n),
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Figure 3: Graphical representation of a polytopic state-set observation steps. Example of a second order system,x = (x1, x2)
T .

Figure 4: Graphical representation of set observation steps

Compute in a recursive loop (initialisek := 0):
1. The input and output setsU(k), Y(k) from Eqs. (4)–(5)
2. The predicted setXp(k)
3. The measured setXm(k)
4. The corrected setX∩(k)
5. The overapproximated setX (k)
6. If k < k̄, setk := k + 1 and go to Step 1,

otherwise exit the loop.

Result:
The state-setsX (k), 0 ≤ k ≤ k̄, verifying (6).

Description of the computed sets
The predicted set is computed using the Equation (1). It
represents the set statesx(k) reachable within one time step:

Xp(k) =
{

x ∈ R
n | x = Ax′ + B u,

x′ ∈ X (k − 1), u ∈ U(k − 1)
}

. (7)

If k = 0, the set is initialised as:Xp(0) = X0.
For the measured set, the output equation (2) is used to
determine:
Xm(k) =

{

x ∈ R
n |

(

C x+D u
)

∈ Y(k),u ∈ U(k)
}

. (8)

The corrected set is the best possible approximation of the
state-set at timek and is obtained as the intersection:

X∩(k) = Xp(k) ∩ Xm(k). (9)

While these first steps are theoretically sufficient to pursue
a set observation, it is necessary in practise to add a step
which keeps the computation burden constant in all recur-
sions. Indeed, each intersection increases the complexityof
representation of the state-set (additional faces appear as seen
in Fig. 3(c)). This may be eluded by searching the smallest
overapproximated set which wraps the corrected set into a
simpler set (e.g. wrapping the set inside an interval box):

X (k) ⊇ X∩(k). (10)

Example of state-set observation
A system of5th order is studied, for which the input and output
sets are seen on the left side of Fig. 5. The setsX (k) ⊂ R

5 are
projected along each state dimension in order to graphically
represent them. This results, as seen in the right side of the
figure, in confidence envelopes (solid lines) for each state co-
ordinate which are guaranteed to contain the true state (dashed
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Figure 5: Example of a state-set observation

lines).

Current research interest lies in the analysis of set-observability
criteria, and the achievable precision of the state estimation. A
further research branch deals with the consistency-based diag-
nosis, using the set observer to test consistency of models and
input-output measurements, see [3, 4, 5].
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