The following table shows figures of the book, which have been produced with MATLAB (Version 2018a). The figure names have been derived from the name of the corresponding MATLAB script.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Caption</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Structure of the systems considered in Example 3.2</td>
<td>ConsensusDemo1.eps</td>
</tr>
<tr>
<td>3.6</td>
<td>Bounds for the trajectories of the systems with the same structure as in Fig. 3.3</td>
<td>ConsensusDemo2.eps</td>
</tr>
<tr>
<td>3.10</td>
<td>Consensus dynamics of the system Σ with complete couplings for $N = 40$ (top) and $N = 5$ (bottom)</td>
<td>ConsensusDemo3.eps</td>
</tr>
<tr>
<td>3.12</td>
<td>Behaviour of the systems with two leaders</td>
<td>ConsensusDemo11.eps</td>
</tr>
<tr>
<td>3.15</td>
<td>Formation control</td>
<td>ConsensusDemo12.eps</td>
</tr>
<tr>
<td>3.17</td>
<td>Performance of the distributed estimation algorithm</td>
<td>ConsensusDemo32.eps</td>
</tr>
<tr>
<td>3.19</td>
<td>Discrete-time consensus</td>
<td>ConsensusDemo17.eps</td>
</tr>
<tr>
<td>3.22</td>
<td>Behaviour of the switching system with strongly connected, weight-balanced graphs</td>
<td>ConsensusDemo4.eps</td>
</tr>
<tr>
<td>3.23</td>
<td>Consensus behaviour of the same system with the same initial states but different switching functions</td>
<td>ConsensusDemo5.eps</td>
</tr>
<tr>
<td>3.23</td>
<td>Consensus behaviour of the same system with the same initial states but different switching functions</td>
<td>ConsensusDemo6.eps</td>
</tr>
<tr>
<td>3.24</td>
<td>Behaviour of the network with changing number of agents</td>
<td>ConsensusDemo10.eps</td>
</tr>
<tr>
<td>3.26</td>
<td>Consensus behaviour of the switching system</td>
<td>ConsensusDemo20.eps</td>
</tr>
<tr>
<td>4.2</td>
<td>Trajectories of synchronised oscillators</td>
<td>SyncDemo18.eps</td>
</tr>
<tr>
<td>4.6</td>
<td>Root locus of the agent</td>
<td>SyncDemo3.eps</td>
</tr>
<tr>
<td>4.7</td>
<td>Synchronisation behaviour of the oscillators</td>
<td>Syncdemo4.eps</td>
</tr>
<tr>
<td>4.8</td>
<td>Trajectories of two oscillators with different communication structure</td>
<td>SyncDemo5.eps</td>
</tr>
<tr>
<td>4.12</td>
<td>Behaviour of the vehicle platoon ($N = 10$)</td>
<td>SyncDemo13.eps</td>
</tr>
<tr>
<td>4.23</td>
<td>Behaviour of three coupled oscillators with different coupling strength</td>
<td>LCNetworkDemo3.eps</td>
</tr>
</tbody>
</table>
4.24 Behaviour of an oscillator network with ten nodes LCNetworkDemo5.eps
4.25 Comparison of the eigenvalues of the networks with path or with ring structure ... LCNetworkDemo6.eps
4.25 Comparison of the eigenvalues of the networks with path or with ring structure ... LCNetworkDemo7.eps
4.34 Root loci of the closed-loop agent and the extended closed-loop agent ... SyncIMPDemo10.eps
4.37 Command step response of the velocity control loop of ten vehicles with different mass ... SyncIMPDemo12.eps
4.39 Behaviour of the platoon with neighbouring couplings SyncIMPDemo15.eps
4.41 Behaviour of a single Kuramoto oscillator with $\omega_1 = 1$, $\theta_{10} = 2$ and $u_i(t) = 0$.. SyncKuramotoDemo1.eps
4.42 Synchronisation of uniform Kuramoto oscillators with linear couplings ($\omega_i = 1$, $k = 0.03$) .. SyncKuramotoDemo2.eps
4.43 Phase-locking behaviour of non-uniform Kuramoto oscillators ... SyncKuramotoDemo3.eps
4.47 Complete synchronisation of non-uniform Kuramoto oscillators ... SyncKuramotoDemo5.eps
4.48 Behaviour of uniform Kuramoto oscillators with non-synchronisable phases ... SyncKuramotoDemo8.eps
4.49 Behaviour of ten nonlinearly coupled non-uniform Kuramoto oscillators for two coupling strengths ... SyncKuramotoDemo7.eps
4.50 Evaluation of the synchrony of the network behaviours shown in Figs. 4.47 and 4.49 ... SyncKuramotoDemo9.eps
4.51 Relation between the coupling strength k and the order parameter r_∞, which has been numerically determined for non-uniform oscillators with eigenfrequencies $\omega_i \in [2, 4]$ and all-to-all couplings ... SyncKuramotoDemo10.eps
4.53 Equilibrium states ... SyncKuramotoDemo12.eps
4.53 Synchronisation behaviour of the uniform oscillators with $\theta_{10} = 0$ SyncKuramotoDemo11.eps
4.54 Phase-locking of three non-uniform Kuramoto oscillators with initial phases (4.185) ... SyncKuramotoDemo13.eps
4.55 Synchronisation of ten extended oscillators with nonlinear all-to-all couplings and coupling strength $k = 1.5$ (left) and $k = 0.2$ (right) ... SyncKuramotoDemo14.eps
4.55 Synchronisation of ten extended oscillators with nonlinear all-to-all couplings and coupling strength $k = 1.5$ (left) and $k = 0.2$ (right) ... SyncKuramotoDemo15.eps
4.56 Synchronisation of ten Kuramoto oscillators with nonlinear star couplings ... SyncKuramotoDemo16.eps
4.57 Outputs of four oscillators (detail of Fig. 4.56) SyncKuramotoDemo17.eps
4.58 Behaviour of van-der-Pol oscillators SyncVanDerPol11.eps
5.4 Communication structure and behaviour of the forth agent

5.14 Root locus and step response of the controlled robot

5.14 Root locus and step response of the controlled robot

5.15 Behaviour of the five robots with neighbouring couplings and with the communication graphs of Fig. 5.12

5.15 Behaviour of the five robots with neighbouring couplings and with the communication graphs of Fig. 5.12

5.20 Vehicle outputs $y_1(t), ..., y_4(t)$ for sinusoidal input (top) and for step input (bottom)

5.21 Details of the step responses $y_i(t)$ of $N = 50$ vehicles

5.22 Velocities and vehicle distances in a braking manoeuvre (left/bottom curve: v_0, d_1, far right/top curve: v_4, d_1) (left) and vehicle positions s_i (right)

5.22 Velocities and vehicle distances in a braking manoeuvre (left/bottom curve: v_0, d_1, far right/top curve: v_4, d_1) (left) and vehicle positions s_i (right)

5.23 Velocities and vehicle distances for changing command signal $v_{ref}(t)$ of the leader (dashed line)

5.27 Platoon behaviour with ACC (velocities $v_0, ..., v_5$; distances $d_1, ..., d_5$)

5.29 Velocities and distances (left) and positions (right) of the vehicles in a platoon with CACC

5.29 Velocities and distances (left) and positions (right) of the vehicles in a platoon with CACC

5.30 Impulse responses belonging to the transfer functions (5.108), ($i = 2, ..., 5$)

5.31 Platoon behaviour with CACC (left) and ACC (right)

5.31 Platoon behaviour with CACC (left) and ACC (right)

5.32 Comparison of the velocity $v_2(t)$ of the second follower (third curve from above) for CACC (top) and ACC (bottom)

5.34 Impulse response and vehicle distance in a braking manoeuvre

5.36 Impulse responses of the controlled vehicles ($\dot{y} - , \ddot{f} - -$)

5.37 Impulse responses of the controlled vehicle for proportional distance controller

5.38 Vehicle distances in a platoon with distance controllers

6.3 Characteristic path length of the undirected path-graph

5.21

5.22

5.23

5.27

5.29

5.30

5.31

5.32

5.34

5.36

5.37

5.38

6.3

RegularGraphDemo3.eps
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Relative frequencies of the vertex degrees of the graph of Fig. 6.6 and degree probability distribution of a random graph</td>
<td>RandomGraphDemo10.eps</td>
</tr>
<tr>
<td>6.8</td>
<td>Comparison of an exponential probability distribution -o-o- with a power-law probability distribution -●-</td>
<td>ScaleFreeDemo1.eps</td>
</tr>
<tr>
<td>6.12</td>
<td>Characteristic number \bar{s} of connected components and probability for the graph to be a single connected component</td>
<td>RandomGraphDemo1.eps</td>
</tr>
<tr>
<td>6.14</td>
<td>Disturbance behaviour of the electrical power network</td>
<td>RandUQNet1.eps</td>
</tr>
<tr>
<td>6.15</td>
<td>Degree distribution of a random graph with $N = 51$ vertices and connection probability $p = 0.2$</td>
<td>RandomGraphDemo2.eps</td>
</tr>
<tr>
<td>6.17</td>
<td>Diameter of random graphs</td>
<td>RandomGraphDemo11.eps</td>
</tr>
<tr>
<td>6.18</td>
<td>Characteristic path length of random graphs</td>
<td>RandomGraphDemo3.eps</td>
</tr>
<tr>
<td>6.24</td>
<td>Characteristic path length and clustering coefficient of small-world networks in dependence upon the re-connection probability p_r</td>
<td>SmallWorldDemo1.eps</td>
</tr>
<tr>
<td>6.27</td>
<td>Degree distribution of a scale-free network (only non-zero values are shown by the circles)</td>
<td>ScaleFreeDemo5.eps</td>
</tr>
<tr>
<td>7.2</td>
<td>Random sequences considered in Example 7.2</td>
<td>ConvergenceDemo1.eps</td>
</tr>
<tr>
<td>7.4</td>
<td>Probability distribution (7.12), outcome of a single experiment and the realisation of the sequence ${X(k, \omega)}$</td>
<td>ConvergenceDemo7.eps</td>
</tr>
<tr>
<td>7.8</td>
<td>Realisation of the random sequence (7.20)</td>
<td>ConvergenceDemo2.eps</td>
</tr>
<tr>
<td>7.12</td>
<td>Martingale (left) and supermartingale (right)</td>
<td>ConvergenceDemo8.eps</td>
</tr>
<tr>
<td>7.12</td>
<td>Martingale (left) and supermartingale (right)</td>
<td>ConvergenceDemo9.eps</td>
</tr>
<tr>
<td>7.15</td>
<td>Pendulum behaviour for the networked controller (—) compared with the behaviour for the controller with permanent data transfer (– - -)</td>
<td>NetwPendulum1.eps</td>
</tr>
<tr>
<td>7.16</td>
<td>Details of Fig. 7.15</td>
<td>NetwPendulum2.eps</td>
</tr>
<tr>
<td>7.17</td>
<td>Lypunov function of the inverted pendulum</td>
<td>NetwPendulum3.eps</td>
</tr>
<tr>
<td>7.19</td>
<td>Random agreement</td>
<td>RandomNetDemo6.eps</td>
</tr>
<tr>
<td>7.21</td>
<td>Behaviour of a system with $N = 12$ agents and Erdős-Rényi communication network with probability $p = 0.08$</td>
<td>RandomNetDemo1.eps</td>
</tr>
<tr>
<td>7.23</td>
<td>Number of edges in the communication graph</td>
<td>RandomNetDemo2.eps</td>
</tr>
<tr>
<td>8.4</td>
<td>Average path length v_i for 40 agents with parameters $p \in {0, 0.03, 0.06, 0.1, 0.13, 0.4}$</td>
<td>SelfOrgRobotDemo2.eps</td>
</tr>
<tr>
<td>8.5</td>
<td>Interval for the upper bound \bar{v}</td>
<td>SelfOrgRobotDemo3.eps</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Image</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>8.6</td>
<td>Performance of 21 robots with path connection (above) and with the effective communication graph (below)</td>
<td>SelfOrgRobotDemo4.eps</td>
</tr>
<tr>
<td>8.7</td>
<td>Delay of the robot formation in two experiments with the same connection probability $p = 0.1$</td>
<td>SelfOrgRobotDemo5.eps</td>
</tr>
<tr>
<td>8.7</td>
<td>Delay of the robot formation in two experiments with the same connection probability $p = 0.1$</td>
<td>SelfOrgRobotDemo6.eps</td>
</tr>
<tr>
<td>8.9</td>
<td>Probability of the edge $(i-1 \rightarrow i)$ to be an edge of the effective communication graph</td>
<td>SelfOrgRobotDemo7.eps</td>
</tr>
<tr>
<td>8.10</td>
<td>Average path length v_i for different sizes M of the neighbourhood</td>
<td>SelfOrgRobotDemo8.eps</td>
</tr>
<tr>
<td>8.11</td>
<td>Δv in dependence upon the connection probability $p \in {0, 0.03, 0.1, 0.4}$ and the size M of the neighbourhood</td>
<td>SelfOrgRobotDemo9.eps</td>
</tr>
<tr>
<td>8.12</td>
<td>Behaviour of the networked robots with the basic communication structure (above) and with the effective communication structure (below) ($y_i(t)$ is drawn for $i = 1, 6, 11, ..., 26$)</td>
<td>SelfOrgRobotDemo11.eps</td>
</tr>
<tr>
<td>8.13</td>
<td>Performance index of the networked robots</td>
<td>SelfOrgRobotDemo10.eps</td>
</tr>
<tr>
<td>8.18</td>
<td>Average path length v_k for agents with the rank $k = 1, ..., 30$ with probability $p \in {0, 0.03, 0.06, 0.1, 0.17, 0.4}$</td>
<td>SelfOrgRobotDemo12.eps</td>
</tr>
<tr>
<td>8.19</td>
<td>Bound \bar{v} of the average path length</td>
<td>SelfOrgRobotDemo13.eps</td>
</tr>
<tr>
<td>8.21</td>
<td>Performance of the robots for two entry points of the leader</td>
<td>SelfOrgRobotDemo14.eps</td>
</tr>
<tr>
<td>8.21</td>
<td>Performance of the robots for two entry points of the leader</td>
<td>SelfOrgRobotDemo15.eps</td>
</tr>
<tr>
<td>8.27</td>
<td>Reconstruction of the disturbance effect on the output $y_3(t)$ of the third multirotor</td>
<td>SelfOrgCopterDemo1.eps</td>
</tr>
<tr>
<td>8.28</td>
<td>Effect of the disturbance $d_3(t)$ on the whole fleet: with complete networked controller (left) and with switching controller (right)</td>
<td>SelfOrgCopterDemo3.eps</td>
</tr>
<tr>
<td>8.28</td>
<td>Effect of the disturbance $d_3(t)$ on the whole fleet: with complete networked controller (left) and with switching controller (right)</td>
<td>SelfOrgCopterDemo4.eps</td>
</tr>
<tr>
<td>8.29</td>
<td>Effect of several disturbances on the multirotor fleet with non-switching controller (left) and switching controller (right)</td>
<td>SelfOrgCopterDemo6.eps</td>
</tr>
<tr>
<td>8.29</td>
<td>Effect of several disturbances on the multirotor fleet with non-switching controller (left) and switching controller (right)</td>
<td>SelfOrgCopterDemo5.eps</td>
</tr>
<tr>
<td>8.31</td>
<td>Three piecewise constant disturbances acting on neighbouring multirotors</td>
<td>SelfOrgCopterDemo12.eps</td>
</tr>
<tr>
<td>9.8</td>
<td>Behaviour of the pendulum with continuous state-feedback controller</td>
<td>EventtriggeredPendulum1.eps</td>
</tr>
<tr>
<td>9.8</td>
<td>Behaviour of the pendulum with continuous state-feedback controller</td>
<td>EventtriggeredPendulum2.eps</td>
</tr>
<tr>
<td>9.9</td>
<td>Pendulum with event-triggered control</td>
<td>EventtriggeredPendulum3.eps</td>
</tr>
<tr>
<td>9.9</td>
<td>Pendulum with event-triggered control</td>
<td>EventtriggeredPendulum4.eps</td>
</tr>
</tbody>
</table>
9.10 Pendulum behaviour for continuous (- - -) and for event-triggered control (—) EventtriggeredPendulum5.eps
9.11 Disturbed pendulum: in the two time intervals marked an external disturbance occurs EventtriggeredPendulum7.eps
9.11 Disturbed pendulum: in the two time intervals marked an external disturbance occurs EventtriggeredPendulum8.eps
9.12 Behaviour of the event-triggered pendulum for a long time horizon EventtriggeredPendulum11.eps
9.12 Behaviour of the event-triggered pendulum for a long time horizon EventtriggeredPendulum12.eps
9.15 Event-triggered disturbance attenuation of the inverted pendulum without disturbance estimation EventtriggeredPendulum9.eps
9.16 Pendulum behaviour with disturbance estimation EventtriggeredPendulum10.eps
9.24 Behaviour of the overall system with event-triggered decentralised control VERA Demo11.eps
9.24 Behaviour of the overall system with event-triggered decentralised control VERA Demo12.eps
9.25 Coupling signals ... VERA Demo13.eps
9.26 Decentralised event-triggered without approximate coupling signals VERA Demo14.eps
9.26 Decentralised event-triggered without approximate coupling signals VERA Demo15.eps
9.31 Synchronisation by means of a continuous networked controller .. EventtriggeredSync2.eps
9.32 Synchronisation by means of an event-triggered networked controller .. EventtriggeredSync3.eps
A1.2 Behaviour of the systems with the graphs shown in Fig. 3.7 ConsensusDemo9.eps
A1.3 Behaviour of the system with different feedback gain $k = 1$ (top), $k = 2$ (middle) and $k = 5$ (bottom) ConsensusDemo8.eps
A1.4 Behaviour of the three systems .. ConsensusDemo7.eps
A1.6 Consensus behaviour for the path-graph (top) and the graph with additional edges (bottom) ConsensusDemo19.eps
A1.8 Nyquist plot of the transfer functions (A1.9) ConsensusDemo30.eps
A1.9 Comparison of the consensus behaviour of the system without delay (top) and with delay $\tau = 0.3$ (bottom) ConsensusDemo31.eps
A1.10 Rendezvous of six robots .. ConsensusDemo28.eps
A1.11 Robot positions at three time points ConsensusDemo29.eps
A1.12 Behaviour of the robots with ring communication structure ConsensusDemo13.eps
A1.12 Behaviour of the robots with ring communication structure ConsensusDemo14.eps
A1.13 Behaviour of the robots with neighbouring couplings ConsensusDemo15.eps
A1.14 Load-balancing of multiprocessors ConsensusDemo16.eps
A1.15 Result of the gossiping algorithm ConsensusDemo18.eps
A1.16 One iteration steps of the distributed algorithm LinEqn2.eps
A1.17 Solution of a linear equation as a consensus problem LinEqn1.eps
A1.18 Solving a linear equation with two different communication structures .. LinEqn3.eps
A1.19 Two examples with different convergence for the same communication structure .. LinEqn4.eps
A1.20 Nyquist plot for the oscillator example SyncDemo14.eps
A1.21 Nyquist plot for the oscillator example SyncDemo15.eps
A1.22 Nyquist plot without and with time delay (τ = 0.6) SyncDemo16.eps
A1.23 Synchronisation behaviour of the platoon (top) and vehicle trajectories (bottom) .. SyncDemo17.eps
A1.24 Synchronisation behaviour of ten oscillators with complete couplings (top) and with path-graph couplings (bottom) SyncDemo18.eps
A1.25 Root locus of the double integrator system SyncDemo19.eps
A1.26 Behaviour of seven synchronised double-integrator agents SyncDemo20.eps
A1.27 Synchronous behaviour of the spring-mass system SyncSpringMass1.eps
A1.28 Oscillating movement of the spring-mass system (— y1, u1, - - - y4, u4) ... SyncSpringMass2.eps
A1.29 Root locus of the agent model (A1.12) (left) and of the extended model (A1.24) (right) ... SyncSpringMass3.eps
A1.30 Root locus of the agent model (A1.12) (left) and of the extended model (A1.24) (right) ... SyncSpringMass4.eps
A1.31 Synchronous behaviour of the spring-mass system SyncSpringMass5.eps
A1.32 Root locus of the oscillator .. SyncDemo1.eps
A1.36 Synchronisation behaviour for $k = 0.1$ SyncDemo2.eps
A1.37 Behaviour of a subsystem LCLCNetworkDemo1.eps
A1.38 Root locus of the oscillator with respect to $(V_1(t), I_1(t))$ (left) and
with respect to $(V_2(t), I_2(t))$ (right) LCLCNetworkDemo2.eps
A1.38 Root locus of the oscillator with respect to $(V_1(t), I_1(t))$ (left) and
with respect to $(V_2(t), I_2(t))$ (right) LCLCNetworkDemo5.eps
A1.39 Behaviour of two oscillator networks with $N = 10$ subsystems ... LCLCNetworkDemo4.eps
A1.40 Root loci of the extended closed-loop agent in two different scales SyncIMPDemo11.eps
A1.41 Stability region of the extended Kuramoto oscillator networks ... SyncKuramotoDemo4.eps
A1.42 Synchronisation of three van-der-Pol oscillators SyncVanDerPo12.eps
A1.42 Synchronisation of three van-der-Pol oscillators SyncVanDerPo13.eps
A1.43 Behaviour of the power network with balanced areas SyncPowerSyst1.eps
A1.44 Behaviour of the balanced power network subject to a disturbance SyncPowerSyst2.eps
A1.45 Behaviour of the unbalanced power network SyncPowerSyst3.eps
A1.46 Step responses of lag systems (5.45) with $T_1 = 1$ DelayDemo1.eps
A1.47 Output $y(D)$ for a second-order system (5.46) with $T_1 = 1$ and
$T_2 \in [0, 5]$.. DelayDemo2.eps
A1.50 Step responses of the vehicles PlatoonExercise8.eps
A1.50 Step responses of the vehicles PlatoonExercise11.eps
A1.51 Velocities and reduced distances of the vehicles PlatoonExercise9.eps
A1.51 Velocities and reduced distances of the vehicles PlatoonExercise12.eps
A1.52 Position of the ten vehicles PlatoonExercise10.eps
A1.54 Impulse responses of the controlled vehicle and vehicle distances for
proportional distance and velocity controller PlatoonDemo9.eps
A1.58 Impulse responses of the controlled vehicles PlatoonExercise1.eps
A1.59 Behaviour of the string stable platoon with $N = 30$ vehicles PlatoonExercise4.eps
A1.59 Behaviour of the string stable platoon with $N = 30$ vehicles PlatoonExercise5.eps
A1.60 Behaviour of the platoon with guaranteed collision avoidance ... PlatoonExercise6.eps
A1.60 Behaviour of the platoon with guaranteed collision avoidance PlatoonExercise7.eps
A1.61 Vehicle velocities and distances in the platoon with CACC (5.116) PlatoonDemo17.eps
A1.63 Vehicle velocities and distances in the platoon with modified CACC PlatoonDemo21.eps
A1.64 Collision avoidance test for the modified CACC (i = 2,...,5) PlatoonDemo23.eps
A1.65 Command step response of the platforms Sprinkler1.eps
A1.67 Trajectories of the platforms with decentralised controller (top) and with networked controller (bottom) Sprinkler2.eps
A1.68 Positions of the platforms at time t = 60 s Sprinkler3.eps
A1.77 Equivalent resistance in dependence upon the probability p RandUQNet2.eps
A1.78 Degree distribution of small-world networks SmallWorldDemo5.eps
A1.78 Degree distribution of small-world networks SmallWorldDemo6.eps
A1.78 Degree distribution of small-world networks SmallWorldDemo7.eps
A1.78 Degree distribution of small-world networks SmallWorldDemo8.eps
A1.79 Relative characteristic path length of a small-world network with 4 shortcuts SmallWorldDemo9.eps
A1.80 Tolerance band and a realisation of $S(k)$ ConvergenceDemo3.eps
A1.81 A realisation of the random sequence $\{R(k)\}$ ConvergenceDemo4.eps
A1.82 Tolerance band around the expected value ConvergenceDemo5.eps
A1.83 Three parts of a convergent sequence ConvergenceDemo6.eps
A1.84 Results of the distributed averaging algorithms for two different sequences of broadcast communications, but with the same initial state RandomNetDemo4.eps
A1.84 Results of the distributed averaging algorithms for two different sequences of broadcast communications, but with the same initial state RandomNetDemo5.eps
A1.85 Time-to-consensus in dependence upon the probability p of Erdős-Rényi graphs for the feedback gain $q = 0.3, 0.5$ and 0.8 RandomNetDemo3.eps
A1.86 Gossiping with deterministic communication topologies ConsensusDemo22.eps
A1.87 Gossiping with random communication ConsensusDemo24.eps
A1.87 Gossiping with random communication ConsensusDemo25.eps
A1.88 Gossiping with the communication to the next two followers ConsensusDemo26.eps
A1.93 Disturbance behaviour of the multirotor fleet with switching P controller (left) and with switching PI controller (right) SelfOrgCopterDemo8.eps
A1.93 Disturbance behaviour of the multirotor fleet with switching P controller (left) and with switching PI controller (right) SelfOrgCopterDemo11.eps
A1.94 Disturbance behaviour of the controlled multirotors SelfOrgCopterDemo9.eps
A1.95 Disturbance effect on the multirotor with PI controller SelfOrgCopterDemo10.eps
A1.109 Relation between T_{min} and $d_{\Delta \text{max}}$ EventtriggeredDemo1.eps
A1.110 Disturbance behaviour of the plant (-- --) and of the continuous closed-loop system (—) VERADemo1.eps
A1.111 Behaviour of the event-triggered control loop VERADemo2.eps
A1.112 Sampled-data control loop .. VERADemo3.eps
A1.113 Behaviour of the event-triggered control loop with scaled norms . VERADemo4.eps
A1.114 Long-time behaviour of the event-triggered control loop VERADemo5.eps
A1.114 Long-time behaviour of the event-triggered control loop VERADemo6.eps
A1.115 Practical stability of the thermo-fluid process VERADemo7.eps
A1.116 Event-triggered synchronisation of six undamped oscillators EventtriggeredSync5.eps
A1.117 Event-triggered synchronisation with path-graph communication .. EventtriggeredSync6.eps