
Distributed control of interconnected

systems with event-based information

requests ⋆

Christian Stöcker
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Abstract: This paper proposes a new approach to distributed control of physically intercon-
nected subsystems which combines continuous and event-based state feedback. The main aim
of the controller is to suppress the propagation of a disturbance within an interconnection of
subsystems. The novelty of this approach is that the controllers request current state information
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approach with event-based information requests is demonstrated in an illustrative example
which shows that the disturbance propagation is considerably reduced compared to a continuous
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1. INTRODUCTION

1.1 Control with event-based requests: Basic idea

The aim of event-based control is to restrict the commu-
nication among components of a control system to time
instants at which the exchange of current information is
necessary to ensure a desired behavior of the closed-loop
system. This paper studies the event-based disturbance
rejection of N physically interconnected linear subsystems
(Fig. 1) and it introduces a new kind of distributed control
which combines continuous and event-based state feed-
back. The novelty of this approach is that the controllers
trigger events if they need information from the neighbor-
ing systems. Therefore, at the event times the controllers
send a request to the neighboring systems to transmit their
current state.

The basic idea of the proposed control method is as
follows: The controller Ci of subsystem Σi generates the
control input ui(t) according to a distributed control law
using the local state xi(t) as well as estimates x̃j(t)
of the states xj(t) of the neighboring subsystems Σj of
subsystem Σi. A deviation between the states xj(t) and
their estimates x̃j(t) occurs due to disturbances that
affect the overall control system. This influence of the
disturbances is monitored in Ci by comparing the measured
coupling input si(t) with its estimate s̃i(t). If at some
time tki

the deviation between si(tki
) and s̃i(tki

) exceeds
a tolerable bound, Ci requests the current states xj(tki

)
from the neighboring subsystems Σj which are used in Σi

to update the estimation.
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Fig. 1. Structure of the control system from the viewpoint
of subsystem Σi

1.2 Literature review

Decentralized or distributed event-based control has been
investigated in several publications, e. g. by Dimarogonas
et al. (2012); Seyboth et al. (2013) regarding event-based
multi-agent control or by Mazo Jr. and Tabuada (2011);
De Persis et al. (2013); Stöcker et al. (2012); Wang and
Lemmon (2011); Yook et al. (2002) regarding the event-
based stabilization of interconnected subsystems. Li and
Lemmon (2011); Donkers and Heemels (2012) studied
control of systems that have separate links between the
sensors and the controller and between the controller and
the actuators and which are used asynchronously in an
event-based fashion for the stabilization of the system. In
the existing literature that deals with distributed event-
based control the control input is kept constant in between
consecutive events. This differs from this paper where a
model-based approach to event-based control is proposed
following the idea of Lunze and Lehmann (2010).

All the above cited references have in common that the
triggering of an event causes the transmission of current



information from the component which has triggered the
event to some other component. In contrast to this, the
present work proposes a method where the controllers
perceive that current state information is required to
ensure a desired disturbance rejection behavior. Therefore,
the alerting controller requests at the event times state
information from the neighboring subsystems. This is
a new type of event-based control which has not been
published before.

1.3 Outline

Section 2 introduces a decomposition of the overall control
system into different models which is used for the design
method of the distributed controller with event-based in-
formation requests presented in Sec. 3. The stability of the
overall control system is investigated in Sec. 4 where the
main analysis result is presented in Theorem 8. Section 5
gives an illustrative example which highlights the fact that
the novel control approach with event-based information
requests considerably reduced the disturbance propagation
across the interconnected subsystems compared to a con-
tinuous decentralized state-feedback control.

1.4 Preliminaries

The following notation will be used. IR and IR+ denote the
set of real numbers and positive real numbers, respectively.
IN0 refers to the set of natural numbers including 0. For a
matrix M and a vector v, ‖M‖, ‖v‖ denote an arbitrary
matrix norm and its induced vector norm, respectively.
The asterisk ∗ represents the convolution-operator, e. g.

G ∗ u =

∫ t

0

G(t− τ)u(τ)dτ.

A = diag (A1, ...,AN ) is a block diagonal matrix with the
matrices Ai (i = 1, . . . , N) on the main diagonal.

Consider a system the behavior of which from input u(t)
to output y(t) is described by the relation

y(t) = G ∗ u (1)

with the impulse response matrix G(t).

Definition 1. (Sontag (1998)). The system (1) is said to be
uniformly bounded-input bounded-output stable (UBIBO-
stable) if its impulse response G(t) is integrable.

In this paper event-based control systems are investigated
which can be modeled as an impulsive system

d

dt
x(t) = Ax(t) +Ed(t), if x(t) ∈ F (2a)

x(t+) = Gx(t), if x(t) ∈ R (2b)

where F and R are referred to as the flow set and reset set,
respectively (cf. Donkers and Heemels (2012); Stöcker and
Lunze (2013)). Hence, the systems that are investigated
here belong to a special class of hybrid dynamical systems
and, therefore, require a different notion of stability. In the
following the concept of ultimate boundedness is used.

Definition 2. (Khalil (2002)). The solution x(t) of the sys-
tem (2) is globally uniformly ultimately bounded (GUUB)
if for every x(0) ∈ IRn there exists a constant p ∈ IR+ and
a time t̄ such that

x(t) ∈ Ω := {x | ‖x‖ ≤ p}, ∀ t ≥ t̄

holds. The system (2) is said to be ultimately bounded if
its state x(t) is GUUB.

2. MODELS

This section introduces the notion of the extended subsys-
tem model Σei, which consists of subsystem Σi augmented
with model information of some other subsystems Σj . This
model representation is the basis for the new approach
to state-feedback control with event-based information
requests introduced in Sec. 3.

2.1 Subsystem model

The i-th subsystem is represented by the state-space model

Σi :







ẋi(t)= Aixi(t) +Biui(t) +Eidi(t) +Esisi(t)

xi(0)= x0i

zi(t)= Czixi(t)

(3)

where xi ∈ IRni , ui ∈ IRmi , si ∈ IRpi , zi ∈ IRqi denote the
state, control input, coupling input and coupling output
of Σi, respectively. The disturbance di ∈ IRwi is assumed

to be bounded by some bound d̂i ∈ IR+:

‖di(t)‖ ≤ d̂i, ∀ t ≥ 0. (4)

Concerning the subsystem Σi the following assumption is
made:

Assumption 3. For each i ∈ N := {1, . . . , N} the pair
(Ai,Bi) is controllable and both the state xi(t) and the
coupling input si(t) are measurable.

The subsystems (3) are interconnected according to the
relation

si(t) =

N∑

j=1

Lijzj(t), ∀ i ∈ N . (5)

Subsystems which are directly interconnected are called
neighbors :

Definition 4. Σj is called neighbor of Σi, if ‖Lij‖ > 0
holds. In the following,

Ni := {j | ‖Lij‖ > 0} ⊆ N \ {i}

is referred to as the set of neighbors of Σi which contains
the numbers of those subsystems, which are directly inter-
connected with Σi.

2.2 Approximate model and residual model

Consider subsystem Σi defined in (3). According to (5)
the coupling input si(t) aggregates the influence of the
remaining subsystems together with their controllers on
Σi (Fig. 2(a)). Assume that, from the viewpoint of Σi,
the relation between the coupling output zi(t) and the
coupling input si(t) is approximately described by some
approximate model

Σai :







ẋai(t) = Aaixai(t) +Baizi(t) +Eaidai(t)

+ Faifi(t)

xai(0) = xa0i

si(t) = Caixai(t)

vi(t) = Haixai(t),

(6)

where xai ∈ IRnai ,dai ∈ IRwai ,fi ∈ IRri and vi ∈ IRsi

denote the state, the disturbance, the residual output
and residual input, respectively. The disturbance dai(t) is
considered to satisfy the relation

‖dai(t)‖ ≤ d̂ai, ∀ t ≥ 0 (7)
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Fig. 2. Interconnection of subsystem Σi and the remaining
control loops: (a) general structure; (b) decomposition
of the remaining controlled subsystems into approxi-
mate model Σai and residual model Σfi.

for some finite d̂ai ∈ IR+. The approximate model Σai is
assumed to have the following properties.

Assumption 5. The matrix Aai is Hurwitz and the pair
(Aai,Cai) is observable.

The mismatch between the behavior of the remaining
controlled subsystems and the approximate model (6) is
expressed by the residual model

Σfi : fi(t) = Gfdi ∗ dfi +Gfvi ∗ vi (8)

where dfi ∈ IRwfi denotes the disturbance on Σfi that is
considered to be bounded:

‖dfi(t)‖ ≤ d̂fi, ∀ t ≥ 0. (9)

Hence, the approximate model Σai together with the resid-
ual model Σfi represents the behavior of the remaining
subsystems and their controllers (Fig. 2(b)). Hereafter the
residual model Σfi is not assumed to be known exactly but
described by some upper bounds gfdi(t) and gfvi(t):

gfdi(t) ≥ ‖Gfdi(t)‖ , gfvi(t) ≥ ‖Gfvi(t)‖ , ∀ t ≥ 0.
(10)

In the following, it is assumed that the state xai(t) of the
approximate model Σai is related with the states xj(t)
(j ∈ Ni) of the neighboring subsystems of Σi. Hence,
the approximate model Σai can be obtained by the linear
transformation

xai(t) =
∑

j∈Ni

Tijxj(t), ∀ t ≥ 0 (11)

with Tij ∈ IRnai×nj . Appendix A presents an example that
shows how the approximate model can be determined us-
ing the transformation (11) for a system that is composed
of serially interconnected subsystems.

2.3 Extended subsystem model

Consider the subsystem Σi augmented with the approxi-
mate model Σai which yields extended subsystem

Σei :







ẋei(t) = Aeixei(t) +Beiui(t) +Eeidei(t)

+ Feifi(t)

xei(0) =
(

x⊤
0i x⊤

a0i

)⊤

vi(t) = Heixei(t)

(12)

with the state xei = (x⊤
i x⊤

ai)
⊤, the composite distur-

bance vector dei = (d⊤
i d⊤

ai)
⊤ and the matrices

Aei =

(
Ai EsiCai

BaiCzi Aai

)

, Bei =

(
Bi

O

)

,

Eei =

(
Ei O
O Eai

)

, Fei =

(
O
Fai

)

, Hei = (O Hai) .

Given Eqs. (4), (7), the augmented disturbance dei(t) is
bounded from above by

‖dei(t)‖ ≤ d̂i + d̂ai =: d̂ei, ∀ t ≥ 0. (13)

The next section presents an event-based controller which
is designed on the basis of the extended subsystem model
Σei.

3. DISTRIBUTED CONTROL WITH EVENT-BASED
INFORMATION REQUESTS

This section introduces a new event-based control method
for the disturbance rejection for physically interconnected
subsystems. The presented event-based controller of sub-
system Σi requests at the event times tki

information from
the neighbor subsystems Σj (j ∈ Ni). The controller works
in a distributed manner and it uses both local state infor-
mation xi(t) and information from interconnected subsys-
tems Σj . The proposed control strategy using information
requests leads to a new kind of event-based control which
contrasts with almost all event-based control approaches
in the existing literature, where events trigger the sending
of information.

3.1 Control aim

The aim of the distributed controller of Σi is

(1) to attenuate the disturbance di(t) on Σi and
(2) to reduce influence of the interconnected subsystems

on subsystem Σi compared to a decentralized contin-
uous state-feedback control.

Assume that this aim is accomplished by means of the
control law

ui(t) = −Kixi(t)
︸ ︷︷ ︸

:= udi(t)

−Kaixai(t)
︸ ︷︷ ︸

:= uai(t)

(14)

where xai(t) is the state of the approximate model Σai

and the gains Ki and Kai are appropriately chosen in a
sense that is specified later. The controller of Σi has no
permanent access to the approximate model state xai(t)
and, hence, Eq. (14) is not applicable.

The basic idea how the control aim can be achieved
nonetheless is to imitate the continuous state-feedback
(14) by an event-based controller that is introduced in the
next section.

3.2 Event-based controller

The event-based controller Ci that is presented in this
section is assumed to have continuous access to the subsys-
tem state xi(t) and the coupling input signal si(t). Thus,
Ci can determine the first part of the control law (14)
denoted by udi(t) in a continuous manner, whereas the
part uai(t) cannot be implemented as stated in (14). The



following explains how the controller Ci approximates the
signal uai(t) and requests current state information from
the neighboring subsystems if needed.

The controller Ci determines an approximation x̃ai(t) ∈
IRnai of the current state xai(t) using the model

Σ̃ai :







d

dt
x̃ai(t) = Aaix̃ai(t) +BaiCzixi(t)

x̃ai(t
+

ki
) =

∑

j∈Ni

Tijxj(tki
)

s̃i(t) = Caix̃ai(t)

(15)

where the relation zi(t) = Czixi(t) is applied. Having the
approximation x̃ai(t), the controller generates the control
input ui(t) according to the control law

ui(t) = −Kixi(t)−Kaix̃ai(t). (16)

The feedback-gains Ki and Kai are assumed to be de-
signed such that the matrix

Āei :=

(
Ai −BiKi EsiCai −BiKai

BaiCzi Aai

)

(17)

is Hurwitz.

In general, the approximate state x̃ai(t) deviates from the
current state xai(t), since in the model (15) the influences
of the disturbance dai(t) and of the residual model via the
signal fi(t) are omitted. In order to bound the deviation
between the state xai(t) and its approximation x̃ai(t), the
state x̃ai is reinitialized according to the transformation
(11) at the time instants tki

(ki ∈ IN0) which are referred
to as event times. In order to determine these event times
tki

, the controller Ci compares the continuously measured
coupling input si(t) with the signal s̃i(t) produced by the
model (15) and triggers an event whenever the condition

‖si(t)− s̃i(t)‖ = ēi (18)

is met, where ēi ∈ IR+ is the event threshold. At the event
times

tki
:= min {t > tki−1 | ‖si(t)− s̃i(t)‖ = ēi} .

t0i = 0

the controller Ci requests the subsystems Σj , j ∈ Ni to
transmit their states xj(tki

) to Ci. The states xj(tki
) are

then used in (15) in order to reset the model state x̃i.

In summary, the controller Ci of subsystem Σi continuously
measures the subsystem state xi(t) and the coupling input

si(t). The state xi(t) is used to evaluate the model Σ̃ai

given in (15) and, together with the state x̃ai(t) for
generating the control input (16). Whenever the condition
(18) is satisfied the state information xj(tki

) is requested
from all neighboring subsystems Σj , (j ∈ Ni) and is used

to reset the state x̃ai(t) of the model Σ̃ai. The structure
of the controller Ci is illustrated in Fig. 3.

3.3 Event-based control loop

The extended subsystem Σei together with the proposed
event-based controller (15), (16), (18) can be formulated
as an impulsive system (cf. Donkers and Heemels (2012);
Stöcker and Lunze (2013)) that is represented by the model

Ci

−Ki

−Kai Σ̃ai

Requests

Cond. (18)

xi(t)ui(t)

x̃ai(t) s̃i(t)

si(t)

xj(tki
)

Fig. 3. Structure of the controller Ci

Σci :







(
ẋei(t)
˙̃xai(t)

)

=




Aci

(
−BiKai

O

)

(BaiCzi O) Aai





(
xei(t)
x̃ai(t)

)

+

(
Eei

O

)

dei(t) +

(
Fei

O

)

fi(t)

(
xei(t

+

ki
)

x̃ai(t
+

ki
)

)

=

(
I O

(O I) O

)(
xei(tki

)
x̃ai(tki

)

)

vi(t) = (Hei O)

(
xei(t)
x̃ai(t)

)

(19)

with

Aci :=

(
Ai −BiKi EsiCai

BaiCzi Aai

)

. (20)

The first equation in (19) is evaluated if
(
xei(t)
x̃ai(t)

)

∈ Fi :=
{
w ∈ IRni+2nai | w⊤Qiw < ē2i

}
(21)

holds, with

Qi :=





O O O

O C⊤
aiCai −C⊤

aiCai

O −C⊤
aiCai C⊤

aiCai



 . (22)

Accordingly, the state reset in (19) is performed whenever
(
xei(t)
x̃ai(t)

)

∈ Ri :=
{
w ∈ IRni+2nai | w⊤Qiw = ē2i

}
(23)

is true. The relation between the residual input vi(t) and
the residual output fi(t) is described by the model (8). The
following section investigates the stability of the closed
loop system.

4. STABILITY ANALYSIS

This section presents a method for the stability analysis
of the control loop (8), (19)–(23) with event-based in-
formation requests. For this analysis the system Σci is
transformed by means of the mappings

xei(t) =

(
xi(t)
xai(t)

)

=

(
I O O
O I O

)( xi(t)
xai(t)
x̃ai(t)

)

δai(t) = (O I −I)

(
xi(t)
xai(t)
x̃ai(t)

)

,

which yield the systems



Σ̄ei :







ẋei(t) = Āeixei(t) +

(
BiKai

O

)

δai(t)

+Eeidei(t) + Feifi(t)

xei(t
+

ki
) = xei(tki

)

vi(t) = Heixei(t)

(24)

where the matrix Āei is defined in (17) and

∆ai :

{

δ̇ai(t) = Aaiδai(t) +Eaidai(t) + Faifi(t)

δai(t
+

ki
) = 0.

(25)

The transformed system (24), (25) evolves continuously
if (xei⊤ δ⊤ai)

⊤ ∈ F∆i and the state reset is performed
whenever (xei⊤ δ⊤ai)

⊤ ∈ R∆i, where the flow-set F∆i and
reset-set R∆i of the transformed system are given by

F∆i :=
{
w ∈ IRni+2nai | w⊤Q∆iw < ē2i

}
, (26a)

R∆i :=
{
w ∈ IRni+2nai | w⊤Q∆iw = ē2i

}
(26b)

with

Q∆i :=





O O O
O O O

O O C⊤
aiCai



 . (27)

The structure of the transformed overall control loop is
illustrated in Fig. 4. Note that the interconnection of Σ̄ei

and ∆ai is an equivalent representation of Σci.

dfi(t)

dai(t) dei(t)
∆ai

Σfi

Σ̄ei

fi(t)
vi(t)

δai(t)

Fig. 4. Structure of the transformed system

Before the main result of this section is formulated in The-
orem 8, the following lemma states a sufficient condition
for the stability of the system that is composed of Σfi and
Σ̄ei which is marked in Fig. 4 by the dashed frame. The
difference state δai(t) is assumed to satisfy the relation

‖δai(t)‖ ≤ εi, ∀ t ≥ 0 (28)

for some finite εi ∈ IR+.

Lemma 6. Consider the interconnection of the controlled
extended subsystem Σ̄ei given in (24) and the residual
model Σfi defined in (8) where the disturbances dfi(t) and
dei(t) are bounded as stated in (9) and (13), respectively.
Consider fi(t) to be the output of the interconnection
of Σ̄ei and Σfi. Assume that the difference state δai(t)
is bounded according to (28). If Σ̄ei and Σfi satisfy the
relation

∫ ∞

0

gfvi(t)dt

∫ ∞

0

∥
∥
∥Heie

ĀeitFei

∥
∥
∥ dt < 1, (29)

then the interconnection of Σ̄ei and Σfi is UBIBO-stable.

The proof of Lemma 6 is given in Appendix B. The relation
(29) can be interpreted as a small-gain condition which
claims that the controlled extended system Σ̄ei and the
residual model Σfi are weakly coupled. In the following,
this condition is assumed to be met for all i ∈ N .

Assumption 7. The systems Σ̄ei and Σfi satisfy the condi-
tion (29) for all i ∈ N .

Note that the hypothesis of Lemma 6 requires the bound
εi in (28) to be finite, but the stability condition (29) is
independent of the particular magnitude of εi. This fact is
used in the following to prove the stability of the overall
control system (8), (19)–(23) with event-based information
requests.

Theorem 8. Consider the control system (8), (19)–(23)
where the disturbances dai(t), dfi(t) and dei(t) are
bounded according to (7), (9) and (13), respectively
and let Assumptions 5 and 7 hold for all i ∈ N . Then
the overall control loop (8), (19)–(23) with event-based
information requests is ultimately bounded.

Proof. Consider the interconnection of the systems Σ̄ei

and Σfi which satisfy the stability condition (29) by As-
sumption 7. Hence, the interconnection of these systems is
UBIBO-stable if, according to the hypothesis of Lemma 6,
the difference state δai(t) is bounded by some finite bound
as stated in (28). In order to see that δai(t) is bounded for
all t ≥ 0, consider the difference system ∆ai as defined in
(25) and observe that the output

Caiδai(t) = si(t)− s̃i(t)

is monitored by the controller Ci in order to detect the
event times tki

. Recall that an event is triggered whenever
the condition

‖Caiδai(t)‖ = ‖si(t)− s̃i(t)‖ = ēi

is met and that the event causes a reset of the difference
state δai(t) to zero (cf. (25)). That is, the relation

‖Caiδai(t)‖ ≤ ēi, ∀ t ≥ 0 (30)

holds due to the event triggering and the state reset.
Equation (30) together with the observability of the pair
(Aai,Cai) implies the fact that the difference state δai(t)
is bounded for all t ≥ 0. The previous arguments apply
to all i ∈ N . Hence, the UBIBO-stability of the overall
control system (8), (24)–(27) can be inferred from the
boundedness of the difference state δai(t) and the UBIBO-
stability of the interconnection of the systems Σ̄ei and
Σfi for all i ∈ N . Given that (19)–(23) and (24)–(27)
are equivalent, the UBIBO-stability of the overall control
system (8), (19)–(23) directly follows, which completes the
proof. ✷

5. EXAMPLE

The following example demonstrates the application of the
proposed control approach with event-based information
requests to a system that consists of N = 4 serially
interconnected subsystems as given in Appendix A. The
subsystems are considered to be of first order and each
subsystem is described by the linear state-space model (3)
with the parameters

Ai = 0.4, Bi = 0.2, Ei = 0.2, Esi = 0.2, Czi = 0.2

Aj = 0.6, Bj = 0.2, Ej = 0.1, Esj = 0.3, Czj = 0.4

for i = 1, 2 and j = 3, 4. That is, subsystems Σ1 and Σ2

on the one hand and Σ3 and Σ4 on the other hand are
identical. The interconnection of the subsystems is given
by the relations
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Fig. 5. Disturbance rejection behavior of the control system with event-based information requests

s1(t) = z2(t), s2(t) = z1(t) + z3(t),

s3(t) = z2(t) + z4(t), z4(t) = z3(t).
(31)

The approximate model for each subsystem is designed
according to the approach that is explained in Appendix A
and the feedback gains are chosen to be

K1 = K2 = 2.6, K3 = K4 = 3.75 (32)

and

Ka1 = 0.2, Ka2 = (0.2 0.4)

Ka3 = (0.3 0.6) , Ka4 = 0.6

such that the stability condition (29) holds for all i ∈
N = {1, 2, 3, 4}. In each controller Ci, i ∈ N a request for
current state information from the neighbor subsystems
is triggered if the condition (18) is satisfied where the
thresholds are chosen to be

ēi = 0.25, ∀ i ∈ N . (33)

In the following the disturbance rejection behavior of
the overall control system with event-based information
requests is investigated, where the subsystems Σ2 and Σ4

are disturbed:

d2(t) =

{
1.5, if 50 ≤ t < 100

0, else
(34a)

d4(t) =

{
2, if 150 ≤ t < 200

0, else.
(34b)

Although d1(t) = d3(t) = 0 holds for all t ≥ 0, the
subsystems Σ1 and Σ3 are influenced by the disturbances
due to the interconnections (31). The subsequently pre-
sented simulation results show that, by applying the novel
control approach with event-based information requests,
the disturbance propagation among the interconnected
subsystems is considerably reduced compared to a decen-
tralized continuous state-feedback control.

The simulation results are shown in Fig 5 where the
time intervals in which the disturbances (34) are active
are highlighted in gray. The top figures illustrate the
trajectories of the respective states xi(t) (solid line). For
comparison, these figures also show the state trajectories of
the system that is controlled by decentralized continuous
state-feedback only (dashed line), where each controller
determines the control input according to (16) with (32)
and Kai = 0 for all i ∈ N . It can be seen that by

using decentralized state-feedback only both d2(t) and
d4(t) have a significant impact on the overall system and
not only on the neighbor subsystems as for the novel
control approach. This comparison emphasizes that by
using event-based information requests the disturbance
propagation is considerably suppressed and, therefore, the
disturbance rejection behavior of the overall system is
improved compared to a decentralized continuous state-
feedback control.

The figures in the second row show the coupling input si(t)
(solid line) and its estimation s̃i(t) (dashed line) that is
generated by the respective controllers Ci. Whenever both
lines deviate by the defined threshold (33), Ci triggers
a request for information from the respective neighbor
subsystems which yields a reset of the estimation s̃i(t

+

ki
)

to the current si(tki
). The event times are plotted as

stems in the bottom figures. In the time interval up to
t = 50 s the overall system is in steady state and (except
the initial events) no information request is triggered.
For t ∈ [50, 100] the subsystem Σ2 is subject to the
disturbance d2(t) = 1.5. Short time after the disturbance
gets active it leads to the triggering of events by the
controllers C1 and C3 of the neighbor subsystems Σ1 and
Σ3. The influence of the disturbance d2(t) on Σ1 and Σ3

is attenuated due to the event-triggered reinitialization of
the approximate models in C1 and C3. The effect of the
disturbance d2(t) on subsystem Σ4 is almost negligible
which shows that the disturbance d2(t) is only marginally
propagated over the subsystem Σ3 such that even no
information request is triggered by C4. This behavior is
a characteristic of the proposed control approach with
event-based requests which becomes more obvious when
investigating the rejection of the disturbance d4(t). In the
time interval t ∈ [150, 200] the disturbance d4(t) = 2
affects Σ4 directly and the remaining subsystems via the
interconnections. The influence of d4(t) on Σ3 causes the
triggering of four events and is, hence, sufficiently rejected
such that no events are triggered by C1 and C2.

6. CONCLUSION

The paper has presented a new distributed control ap-
proach for the disturbance rejection in interconnected sub-
systems. The proposed controller combines local contin-



uous and distributed event-based state feedback where,
in contrast to literature, current information is requested
rather than sent at the event times. The main analysis
results has been stated in Theorem 8 saying that the
control system is ultimately bounded if for each subsys-
tem the approximate model, used for the design of each
controller, is weakly coupled with the remaining part of
the overall system. The state of the approximate model
that is incorporated in the controllers is reset at the event
times, which are determined based on locally available
information only. An illustrative example has shown that
by applying the novel control approach with event-based
information requests the disturbance propagation is sig-
nificantly reduced compared to a continuous decentralized
state-feedback controller.
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Appendix A. EXAMPLE FOR THE
DETERMINATION OF AN APPROXIMATE MODEL

This appendix explains how an approximate model (6)
can be determined for the example of N = 4 subsystems
(3) that are serially interconnected as shown in Fig. 1(a)
(cf. Eq. (31)). This coupling structure is representative
for several technical systems like a multizone furnace
(Abraham and Lunze (1992)) or a platoon of vehicles
(Hendrick et al. (1994)).

In the following, an approximate model Σa2 is determined
for this system from the viewpoint of Σ2. For ease of
exposition it is assumed that the disturbances di(t) are
absent for all i ∈ N . From (31) follows that the subsystems
Σ1, Σ3 are neighbors of Σ2 (N2 = {1, 3}). Now consider
the subsystems Σi (i = 1, 3, 4) that are assumed to be
controlled by a continuous decentralized state-feedback

ui(t) = −Kixi(t)

which, hence, yields the controlled subsystems

Σ̄i :

{
ẋi(t) = Āixi(t) +Esisi(t), xi(0) = x0i

zi(t) = Czixi(t)

where Āi = (Ai −BiKi). With the transformation (11)

xa2(t) =
∑

j∈N2

T2jxj(t) =

(
I
O

)

x1(t) +

(
O
I

)

x3(t)

the approximate model Σa2 is obtained as

Σa2 :







ẋa2(t) =

(
Ā1

Ā3

)

xa2(t) +

(
Es1

Es3

)

z2(t)

+

(
O
Es3

)

f2(t)

s2(t) = (Cz1 Cz3)xa2(t)

v2(t) = (O Cz3)xa2(t)

Figure 1(b) illustrates how the approximate model Σa2

together with Σ2 form the extended subsystem Σe2 and
how Σe2 is interconnected with the residual model Σf2.

Σ1

Σ2

Σ3

Σ4

u1(t)

x1(t)

u2(t)

x2(t)

u3(t)

x3(t)

u4(t)

x4(t)

(a)

Σ2

Σ̄1 Σ̄3

Σf2

Σa2

Σe2

u2(t) x2(t)

(b)

Fig. A.1. Serially interconnected subsystems: (a) structure
of the system; (b) decomposition of the system into
residual model Σf2, approximate model Σa2 and ex-
tended subsystem Σe2 from the viewpoint of Σ2.



Appendix B. PROOF OF LEMMA 6

For the sake of readability, in the following proof of
Lemma 6 the index i is entirely omitted. First, consider
the residual system Σf described by (8). With (10)

rf(t) = gfd ∗ d̂f + gfv ∗ rv ≥ ‖f(t)‖ , ∀ t ≥ 0 (B.1)

represents a comparison system for Σf . Accordingly, the
system

rv(t) = gvε ∗ ε+ gvd ∗ d̂e + gvf ∗ rf(t) ≥ ‖v(t)‖ , ∀ t ≥ 0
(B.2)

is a comparison system for Σ̄e given in (24) with

gxε(t) =
∥
∥
∥Hee

ĀetBe

∥
∥
∥ , gvd(t) =

∥
∥
∥Hee

ĀetEe

∥
∥
∥ ,

gvf(t) =
∥
∥
∥Hee

ĀetFe

∥
∥
∥ . (B.3)

The substitution of (B.1) in (B.2) yields

rf(t) = gfd ∗ d̂f + gfv ∗ gvε ∗ ε+ gfv ∗ gvd ∗ d̂e
+ gfv ∗ gvf ∗ rf . (B.4)

An explicit bound rf(t) is obtained from the last equation
by means of the comparison principle (Lunze (1992)):
Under the condition

∫ ∞

0

gfv(t)dt

∫ ∞

0

gvf(t)dt < 1 (B.5)

the impulse response matrices

ĝf(t) = gfd ∗ δ(t) + gfv ∗ gvf ∗ ĝf
ĝε(t) = gfv ∗ gvε ∗ δ(t) + gfv ∗ gvf ∗ ĝε
ĝe(t) = gfv ∗ gvd ∗ δ(t) + gfv ∗ gvf ∗ ĝe

exist and are integrable. Thus, (B.4) can be restated as

rf(t) = ĝf ∗ d̂f + ĝε ∗ ε+ ĝe ∗ d̂e
which is known to be UBIBO-stable due to the condition
(B.5). Given that rf(t) is bounded for all t ≥ 0, from (B.2)
the boundedness of ‖f(t)‖ for all t ≥ 0 follows. Finally,
observe that (B.5) with (B.3) is equivalent to (29) which
completes the proof of Lemma 6. ✷


