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Abstract— This paper investigates the stability of event-based l d(?)
state-feedback loops. Two analysis methods are proposed. The u(?) (1)
first method proves the event-based state-feedback loop to be |~
input-to-state practically stable which means that the state |
converges to a vicinity of the origin. The size of this region |
depends upon the magnitude of the disturbance and the event  --------=--=-------------mmmmm oo '
threshold, which is a design parameter. The second method )
is tailored for event-based state-feedback loops with stable Fig. 1. Event-based state-feedback loop
plant dynamics and it shows that the investigated system is
Input-to-state stable, which implies that for small disturbance
magnitudes the size of the region to which the state converges is

independent of the event threshold. This new result shows that [6]. The analysis methods published so far only prove the

asymptotic stability can be achieved by means of an event-based | j;;
controller with constant event threshold which has been proven ultimate boundedness of the control loop but may not detect

in literature only for decreasing event thresholds. Both analysis the asymptotic stability of the undisturbed loop. The secon
methods are applied to a benchmark example and the results aim of this paper is to develop an analysis method that
are compared with an analysis method known from literature  removes this conservatism of the existing methods.

which shows that the second proposed analysis method yields

less conservative results with respect to the ultimate bound than B | jterature review

existing methods in literature.

In the literature on event-based control asymptotic sta-
. INTRODUCTION bility of the closed-loop system has only been proven for
A. Problem statement approaches that use a decreasing event threshold. Design
) ) ) methods for triggering conditions that guarantee asyngptot
The aim of event-based control is to restrict the feedba%nvergence to the origin have been proposed in [10], [14]-
communication within a control loop to time instants at17] for continuous-time system and in [1] for discreteim
which an event indicates the need for an information eXsystems. In [3] asymptotic stability is obtained by means
change between sensors, controller and actuators in ardergf 5 time-dependent decreasing event threshold. Stability
retain a desired quality of the closed-loop performancés Thanalysis methods for event-based control approachesgkat u
paper investigates the stability of event-based stats®ek 5 constant event threshold have been published in [2], [9],
loops that have the structure proposed in [9] (Fig. 1). The 3] which, in contrast to the aforementioned works, result
control input generator (CIG) incorporates a dynamic modgh yjtimate boundedness rather than asymptotic stability.
of the plant with a continuous state feedback that generatesUsing an impulsive system formulation this paper shows
the current control inputu(t). The event generator (EG) hat the event-based state-feedback loop, which uses a con-
contains the same model and compares the state of thignt event threshold, is asymptotically stable if the phes
model with the continuously measured plant stafe). An  siaple dynamics and the disturbance vanishes. This is a new

event is triggered whenever the difference between bofasylt on event-based control, because asymptotic syabili
states reaches a defined threshold. At this event ime nas peen proven in the existing literature only for decrepsi

(k =0,1,...), the current plant state(t) is transmitted p,t not for constant event thresholds.
by the event generator to the control input generator and IS T impulsive system formulation of the event-based

used in both components in order to reset the model statgontro| system and its analysis with elaborated techniques
_Inthe original work [9], as well as in successive investigapas peen introduced in [2].” In this reference a zero-order
tions like [7], [13], the event-based state-feedback loap h o1 (zOH) has been used for input generation. Therefore,
been analyzed by evaluating the system behavior in betweg{y strycture of the system investigated in [2] differs from

consecutive events. The first aim of this paper is to develgge one that is studied in this paper where a dynamic input

a new analysis method that allows to uniformly investigatgenerator is applied. This difference will be explained in

the system dynamics at and between event times. Insplrga)re detail in Sec. llI-E.

by [2], the event-based state-feedback loop is modeled as

impulsive system, which is analyzed using techniques that. Outline of the paper

have been elaborated in the theory on hybrid systems [8].
The investigated event-based state-feedback loop with sta 1€ model of the event-based state-feedback loop and

ble plant dynamics is known not to generate any event if th f?rmlfllf‘t'on as 3” |mpulliswe systeEJn 'Sdg"{eg.l'.tn S‘?Ci .
disturbanced(t) is small or, moreover, to be asymptotically >€¢tON Il proposed a new Lyapunov-based stability amalys

stable if the disturbance vanishes. This knowledge, horyev ethod ttthat tp;oves tft1_e ﬁventt-lt))?seg stateife_edbactI?mII?jOP to
is not reflected in the analysis methods in literature, e. € 'NPut-lo-stateé practically stable. An analysis me .
vent-based state-feedback loops with stable plant dyrsami
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within the framework of the "Priority Programme “Control Theooj  result, shows that the control loop is input-to-state stabl
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{stoecker, | unze}@t p. r ub. de analysis method proposed in [6] in Sec. V.



D. Preliminaries B. Impulsive system formulation

The following notation will be used. For a vectere R, It has been shown in [9] that the event-based state-
[z|| denotes its euclidean norme(t*) = lim,; 2(s) rep-  feedback loop (3)—(6) can be transformed into an equivalent
resents the limit otc(¢) taken from above. For some signalrepresentation that encompasses the controlled plant
d(t), |||, := esssup,s, ||d(t)]|. AT € R™*" denotes the -
transpose of a matrid € R™*™. Apin(A) and A\yay(A) [ #(t) = Az(t) + BKza(t) + Ed(t),
refer to the minimum and maximum eigenvalue of a matrix Ol zt)) =x(ty)

A € IR™", respectively. For brevity a symmetric matrix

(E‘T Z) is written as( A Z). Afunctiony : R>o — R>,  together with the difference system

is of classKC if it is continuous, positive definite and strictly )

increasing and it is of clask.. if it is also unbounded. A 5. . | ®alt) = Aza(t) + Ed(t), ®)
function 5 : IR>o x IR>o — R is of classKCL if for each 4 za(ty) = 0.

fixed ¢ > 0, B(-,t) is of classk and for each fixed > 0,

B(s,;t) — 0 ast — oo. With the statez = (x mZ)T, Egs. (7) and (8) form an
An impulsive system is represented by the model impulsive system (1) with

()

dalt) — As 7 ; _
() f}m(t) + Ed(t), for &(¢t) € C, (1a) i_(A BK o (E oo I 0 .
E(t) = Ga(t), for &(t) e D (1b) =lo a) E=\g) G=lo o) O
with initial condition#(0) = 2, and wherez: € IR" denotes
the state andl € IR” the disturbance. The sefsc IR" and
D C IR" are referred to as flow set or reset set, respectively. 9 . R _ 0 0
The presented stability analysis methods for (1) refer & th Iza(O” =2 (1)Qz() <&, Q= (g ). 10
following two notions of stability.

Definition 1: The system (1) isnput-to-state practically which leads to the following definition of the flow sétand
stable (ISpS) if there exist functiong € KL, v € K and  reset seD:
a scalaro € R~ such that for all initial conditiong:, and

The event condition (6) can be restated as

every disturbance(t), the solution to (1) exists and satisfies C:= {ac eR"|2'Qz < é2} (11a)
the relation
) A AT s - 52
20 < Blall .+ (ldl) + o Vez0. (@) pi={scR[a7Qz=c"}.  (11b)

The system (1) isnput-to-state stabl¢ISS) if the bound (2) |n summary, Egs. (7)—~(11) are an impulsive system formu-
holds witho = 0. R . lation of the investigated event-based state-feedback loo

Definition 2: The statez(t) of the system (1) is said to (3)—(6). The structure of this impulsive system is depicted
be boundedif (1) is either ISS or ISpS. in Fig. 2 which illustrates that the system, and X, are

Il. EVENT-BASED STATEFEEDBACK LOOP interconnected in a cascade.

A. Model At

In the investigated event-based state-feedback loop 1lrig. ; l () 1
the plant is described by the linear model zA(l) (1)

. 2d > Z(ﬁ >
z(t) = Az(t) + Bu(t) + Ed(t), x(0)=x¢ (3)
with plant statez € IR", control inputu € R™ and Fig. 2. Structure of the impulsive system (7)—(11)
disturbanced € IR? that is bounded by
ld@)ll < lldll =d, Vt=0. 4)
The event-based state-feedback controller includes the co |||, L yAPUNOV-BASED STABILITY ANALYSIS OF THE
trol input generator (CIG) and the event generator (EG). The EVENT-BASED STATEFEEDBACK LOOP
former is described by the model
) - n The cascade structure of the transformed event-based state
@s(t) = Ams(t),  ms(ty) = z(te), (58)  feedback loop (7)—(11) is exploited in the stability anidys

u(t) = —Ka(t), (5b) method developed in this section, where the solutiofig
P andxa(t) of (7) or (8), respectively, are investigated sepa-
V){hire(ftlhﬁ fBG?)b ?SC mgfﬁzli;?gsinosf Ch)tr\;ﬁ:htgj E%mx rately. The boundedness of batfit) andx A (¢) implies the
denotes the event time at which the model stajec IR" boundedness of the overall system stafe).

is reset to the current plant staig€¢;). These event times .
are determined by the event generator, which observes the Boundedness of the difference state

difference stateca (t) = x(t) — xs(t) and triggers an event  The initial reset of the difference state\ at timet, = 0
at timet if the condition yields ¢4 (0) = 0. Hence, the relation
lza(®)] = lle(t) — zs(t)]| <€ (6)

is violated, where the event threshalde IR~ is a design
parameter. At the event timeg the current plant state(¢,,)  directly follows from the event condition (10) and the state
is transmitted to the control input generator. reset defined in (8).

lza(®)|®> <&, Vi>0 (12)



B. Boundedness of the plant state Consider Eq. (13). Using the comparison lemma (see [5]),

Consider the system (7). The statét) is bounded if (7) from Eq. (13) the inequality

admits an ISS-Lyapunov function. A function : IR" — .

IR is an ISS-Lyapunov function candidate for (7) with ratey (g (4)) < e_thV(:co) +/ e—av(t = T)bv |d(7)||? dr

coefficienta, > 0 and scalard,,c, > 0 if V is positive - 0

definite, radially unbounded, and satisfies the inequality t
_ +/ =T llaa(m)|>dr, Vi>0
V(@(t) < —ayV(x(t) + by [d@)] + e |lza®)]” (13) 0

for all &,z € R", d € R? andt > 0, [12]. follows. With the bounds (4), (12) the last inequality yield

The following investigation shows that

—ayt b7v 72, &2
Vi) = 2T (0Pz(t), P—pPTso @4 @ EO)se Vi@ stdiie V=0 (18)

qualifies as an 1SS-Lyapunov function for (7) and tha# bound onz(t) can be derived from Eq. (18) as follows:
parametersu,, by, ¢, > 0 can always be found such thatSince V(z) = x' Px is positive definite and radially
(13) is satisfied. Note that (13) with (7) and (14) hasinbounded, it satisfies the relation

an equivalent representation by the following linear nxatri

inequality (LMI): a(llz|) <V(x) <a(lz|]), VzeR" (29)
A"P+PA+a,P PE , PBK with
* _va | 0 <0 (15)
***** S 4 a(r) == Amin(P) - 7%, @(r) := Amax(P) - 7. (20)
In order to investigate the feasibility of (15), first corsid Hence, Egs. (18)—(20) imply
the LMI
_ _ 1 —aut — —1 by
Mo (APEPACOP FEY o g el <o (0 wm) o (=)
* v ¥ (21)
(¢
The application of the Schur complement (see [4]) yields the +a! <av62) ; V=0

following implication:

The results obtained in this section are summarized in the
following lemma.

Lemma 1:Given that the matrixA is Hurwitz, there
always exists an ISS-Lyapunov function (14) for the system
(7) and parameteres,, b,, ¢, > 0 satisfying (13) which can
be determined using the LMI (15). The statét) of (7) is
ATP+PA+a,P~<0 bounded according to (21).

ATP+PA+a,P+b;'PEETP <0

M““:’{ —byI < 0.

Note that there always exists a symmetric maffix- 0 and
a constantz, > 0 such that

holds, sinceA is Hurwitz. Even if PEET P is generally C. Stability of the event-based state-feedback loop
indefinite, choosing, > 0 large enough satisfies both LMIs

on the right-hand side of the implication. Now, the featipil The results of the previous two sections are now combined
of (15) follows by the same arguments. Using the Schdp order to arrive at a bound on the statg) for the event-
complement, the implication based state-feedback loop (7)—(11). Note that the relation
-1ppT < e(t)] < ||x(t Hll, vt>0 22
15 {M +e PP 20, an le®)ll < 2] + lea®ll, Vez0  (22)
v holds. Hence, Eqg. (22) together with the bounds (12), (21)
is obtained withM defined in (16) and implies the estimate (2) with
P (P{’,K) . B0r1) =t (7 a(r)) (23a)
1 by
Given M < 0, there always exists some constaft> 0 y(r)=a <a7’2> (23b)
such that the LMIs on the right-hand side of the implication v
(17) are fulfilled. o =gl (“e2> T (23c)
In summary, this analysis showed that there exist parame- o ay

tersay, by, c, > 0 and a matrixP = 0 such that the function

V defined in (14) is an ISS-Lyapunov function, because the The presented Lyapunov-based stability analysis is sum-
matrix A is Hurwitz. This result implies the boundedness ofnarized in the following theorem.

the stater(t). The remaining part of this section shows how Theorem 1:The event-based state-feedback loop (7)—(11)
the functionV can be used to determine an explicit bounds ISpS and the state(t) is bounded according to Egs. (2),
on x(t). (23).



D. Discussion of the analysis result |d(?)

The result of the stability analysis, summarized in Theo- s zat) [+ x(t)
rem 1 can be rephrased as follows: Consider the continuous r d ¢
state-feedback loop

. = Fig. 3. Struct f the t fi d t- d t h ZOH
$SF(t):A$SF(t)+Ed(t)7 wSF(O)ZfBo, (24) ig. 3 ructure of the transformed event-based contr@ with ZO

with statexsr € IR” and A = (A — BK). Since A is

Hurwitz, (24) is ISS. Hence, ISS of the continuous state- |V. ANALYSIS OF THE EVENFBASED CONTROL LOOP

feedback loop (24) implies ISpS of the event-based state- WITH STABLE PLANT DYNAMICS

feedback loop (7)—(11). This section develops a novel analysis method for event-
This implication basically corresponds to analysis resultbased state-feedback loops (7)—(11) with stable plants.

known from literature on event-based control. Reference Assumption 1:The plant (3) is ISS, i.e. the matriA is

[9] has proven that the difference between the behavior dfurwitz.

the continuous state-feedback loop (24) and the eventlbase The aim of this analysis is to show that the event-based

state-feedback loop (3)-(6) is bounded and this bound #ate-feedback loop (7)—(11) with stable plant dynamics is

linearly dependent upon the event thresheldA different 1SS rather than ISpS, which is a new result concerning event-

Lyapunov-based approach to the stability analysis has bebased control schemes with constant event threshold.

proposed in [6] where the state(t) of the system (7) was A goundedness of the difference state
shown to be ultimately bounded, i. e. there exists some time

f such that This section refines the result on the boundedness of the
difference stateca (t) presented in Sec. IlI-A. The bound to
o T be developed is stated in terms of the positive definite and
o(t) € Bei={z | l|lzll < e}, V=t radially unbounded functiof : R" — IR with
wherep, is referred to as theltimate boundof the system W(za(t)) = |za®)|® = zA () Iza(t),

(7). Observe that in (2) the term which is assumed to satisfy the relation

p(r)=v(r)+o (25) W(za(t) < —awW(za(t) + by |d)]*  (26)
)j someay, by > 0 and for allt € [tg, tgt1)-

can be interpreted as an ultimate bound of the event—bas@ s explained hereafter, appropriate parametgrsh, > 0

state-feedback loop (7)~(11) Abecaq{af{t)u —past = oo always exist such that Eq. (26) holds, given that Assump-
for arbitrary initial conditionszg, [11]. ; . , . .
. o tion 1 is fulfilled. Note that (26) with (8) yields

The mentioned references and the new stability analysis
method summarized in Theorem 1 have in common that th&V (za) (Az(t) + Ed(t) < —awW (za(t)) + by |d®)]
event-based state-feedback loop is proven to be ISpS. That™* _
is, all these analysis methods result in the fact that there Yhich can be restated as the following LMI:
a termo > 0 contributing to the ultimate boung which T
is constant and does not depend upon the disturbance bound <A + é +awl _f I) =0. 27)
d. The stability analysis presented in Sec. IV will show that v
this result is conservative and not true for event-baseté-staUsing the Schur complement the implication
feedback loops (7)—(11) with stable plant dynamics. AT+ At aul+b-1EET <0

@7 & { T (28)

is obtained. Given that Assumption 1 holds there always
The impulsive system formulation of an event-based corexists somez,, > 0 such that
trol loop with state feedback and an analysis based on AT 4 A T
this representation has been introduced in [2]. However, th +A+awl <0.
structure of the event-based control loop investigatedi® t Hence, choosing,, > 0 large enough satisfies both LMIs
reference differs from the one that is studied here. In plaasn the right-hand side of the implication (28).
of the control input generator (5) a ZOH has been applied Now, Eq. (26) is used to determine a bound on the

E. Comparison to an existing analysis method

which results in the model (1) with difference stater A (¢) in terms of the functio?. Recall that

~ according to (8) a reset at the event tinngsesults in the fact

A (A BK) B (E) G- (I O) that za (t;) = 0, which impliesW (za(t})) = 0. Hence,
“\A BK)’ “\E)’ —\0 0/ the application of the comparison lemma to (26) yields

t
instead of (9). The structure of the system investigated in W(xa(t)) g/ o aw(t = T)bw ||d(7')||2d7'
[2] is illustrated in Fig. 3 wher&, represents the difference tk
system with changed dynamics compared to the system (8r ¢ < [tx, 5, 1). Observe that the right-hand side of the last
The transformed system has a feedback that does not allgvequality is bounded from above by
for a sequential analysis of the systetig and>. as done oo b
in this paper, but requires a different analysis approaah th W(za(t)) < / e WTdr by, & = 2 > (29)
incorporates the entire system. 0

w



for all ¢ > 0. Equation (29) represents a bound on th&. Stability of the event-based state-feedback loop

difference staterx () in dependence upon the disturbance A pound on the statei(t) of the event-based state-
magnituded which, however, may exceed the valé for  feedback loop (7)-(11) with stable plant dynamics is now
large disturbances. In virtue of the event condition (10J angptained using the relation (22). Equation (22) and the

the state reset defined in (8) the estimate (29) can be magsunds (31), (35) yield the estimate (2) with
more precise:

b o B(r,t) :=a ! (efavta(r)) (36a)
W (za(t)) < min (WJZ, 62) = W(d), Vt>0.(30) . NN
Oy Y(r) =a "t (g(r) + (W(r)) (36b)
This result on the boundedness of the difference stat&) o =0. (36¢)
is summarized in the following lemma. Note that the function3(r,t) in (36a) is the same is in

Lemma 2:Consider the difference system (8) and lefgq. (23a). Since = 0 holds, the event-based state-feedback
Assumption 1 hold. Then the staie (¢) of (8) is bounded loop (7)—(11) with stable plant dynamics is ISS.

by Theorem 2:If the plant is stable, i.e. the matrid is
2 _ kT Hurwitz, the event-based state-feedback loop (7)—(11$% |
lea®” < W(d), vt=0, (31) and the statez(¢) is bounded according to Egs. (2), (36).
WhereW(J) is defined in Eq. (30). Theorem 2 implies asymptotic convergence of the state

In contrast to Eq. (12) the bound (31) takes account of ti(!) 0 the origin if the disturbancel(t) vanishes. This
fact that a deviation of the difference statg (¢) from the result is known from literature only for event-based cohtro
origin is only caused by a disturbandét). Hence, Eq. (30) schemes that use a decreasing event threshold, e.g. in [3],
also reflects thallza ()] never reaches the event threshold10l: [141-{16], but not for event-based controllers with
¢, i.e. no events are triggered, if the disturbance magnitudi@nstant event threshold as investigated in this paper.

d is small, which meang satisfies the relation V. EXAMPLE
- b\ 2 A. Thermofluid process
d<e- (W> =:4. (32) The presented analysis methods are now illustrated using
Gw the example of a thermofluid process [7]. The plant is
B. Boundedness of the plant state described by the linearized model (3) with
Following the analysis presented in Sec. llI-B, this seattio 5 -0.8 0
determines a bound on the statét) of the system (7) by A=107"_1 Jo-7 _17
means of the ISS-Lyapunov functioW («(t)) defined in (37)
(14) which has been shown to satisfy the inequality (13) B— ( 021 0 ) . E= ( 0.15 ) .
for appropriateP - 0 and parameters,, by, ¢, > 0. —0.11 0.02 —0.08
Applying the comparison lemma to Eq. (13) yields The event-based controller consists of the control input
t generator (5) with the state-feedback gain
V(z(t)) < e_avtV(sco) +/ e av(t— T)bv |d(7)||* dr 008 —0.02
0 K — . - .
(0.17 0.72 )

t
—ay(t—T1 2
+/0 et T, lza(m)Idr, ¥t=0. 204 the event generator which uses the condition (6) with

o . ) . event thresholde = 2 to determine the event times. A
By substituting (4) and (31) into the last inequality, a bdun comparison of the analysis methods is accomplished by

on V(z()) is given by means of the ultimate boung of the event-based state-
V(mt) < e_thV(aco) +g(d), Vt>0 (33) feedback I.oop (M—11) def|.ned in Eq. (25).
. ) B. Analysis method according to Sec. llI
with the functiong : R — IR, g € Koo For the considered example, the function (14) with

1 ~ —
g(d) == a(bv d* +cy W(d)) (34) P=10" (435..11 438..12> (38)

An estimate on the state(/) can be obtained from Egs. (33), satisfies the relation (13) for the parameters
(34) by proceeding according to Sec. IlI-B(x(t)) satisfies

the relation (19) for some functions, @ € K, defined in ay =0.015, b, =04, ¢, =1-107". (39)
(20). Thus, Eg. (33) implies From Eqg. (20) with (38) the comparison functions
()] <o (e_avt a(||3'90H)) +a ' (9(d) (35) a(r)=1"-432-107° & a7'(r)=481-Vr

— 2 -3
=7r“.50.2-10
for all ¢ > 0. a(r)=r

The following lemma summarizes the result on the boundollow. According to Eq. (23) these results yield
edness of the state(t). _0.015,

Lemma 3:Consider the system (7) and let Assumption 1 B(r,t) =1.08 -7-e” 2, ~(r) =24.8-r, o =4.48.
hold. Then the state(t) is bounded according to (35), whereHence, the ultimate boung that is obtained by means of
P - 0 of (14) and the parameteis,,b,,c, > 0 can be this analysis method adds up to
determined using the LMI (15) and the functioasa and
g(d) defined in (20) or (34), respectively. p(r) =~(r)+o =248 r+4.48.



C. Analysis method according to Sec. IV S

The second proposed analysis method is applicable to thé&
benchmark, since the matri stated in (37) is Hurwitz. First
the functionV is determined as specified in (30). Therefore,
observe that for this example the inequality (26) is fuldllle
for the parameters

Qy =1-1073,

Ultimate bo

by = 41,
which yields
W (r) = min (4.1-10* - 7%,4) .

In order to determine the function® and~ as specified in
(36), the I1SS-Lyapunov function (14), (38) and the parame-
ters given in (39) yield

_0.015,
B(r,t) =1.08-r-e 2

0 .

0§ 002 {004 0.06

Disturbance magnitude d

0.08 0.1

Ultimate boundedness analysis proposed in [6]
Analysis method according to Sec. lll
Analysis method according to Sec. IV
Actual ultimate bound determined by simulation

Fig. 4. Comparison of the analysis results

y(r) = 4.81- (26.7 .72 4 0.07 - min (4.1 .10%- r2,4))1/2 dynamics are stable, the second analysis. method. prqved
+ min (202 -1, 2) (40) the event-based control loop to be ISS. This result implies

L asymptotic stability if the disturbance vanishes. The ysial
Since o = 0 holds, these results amount to the ultimaténethods have been compared with respect to the ultimate
boundy(r) = ~v(r) as given in (40). Finally, from Eq. (32) bound, using the example of a thermofluid benchmark pro-

cess. This comparison showed that the method which is
§=0.01 (41)

follows, whered is the largest disturbance magnitude fo
which no events are generated.

D. Comparison of the analysis results

Figure 4 illustrates the analysis results obtained with thd!
methods proposed in Sec. lll and Sec. IV and compares them
with the result of [6] as well as the actual ultimate boundI2]
of the event-based state-feedback loop (7)—(11). The figure
shows the ultimate boung plotted against the disturbance
magnituded. (3]

The analysis method proposed in [6] and the novel method
presented in Sec. Il yield similar results. Both methods
prove the event-based state-feedback loop (7)-(11) to b#]
ISpS and, thus, obtain an ultimate boupdhat has an offset 5]
at d = 0. In contrast to this, the analysis method presented
in Sec. IV yields an ultimate boung that reflects the [6]
characteristics of the actual ultimate bound. The bound/gro [7]
linearly with d in the intervald € [0,d] with ¢ as is (41).
The effect of state reinitialization is taken into accowortdll
d > ¢ which reduces the slope of the curve. The estimate i$8]
considerably less conservative compared to the resultseof t
previously discussed analysis methods. However, the ekbriv [9]
disturbance magnitudg up to which no events are triggered [10]
is by one third smaller than the actual valoig; = 0.03
which has been determined by means of simulations.

In summary, this comparison shows that a more detaildg!
analysis of the difference statea(t) as done in Sec. IV
results in a more accurate estimate on the actual ultimaite]
bound of the event-based state-feedback loop (7)—(11) wi !
stable plant dynamics, than the constant bound (12) that has
been used in the analysis presented in Sec. Il and methods
known from literature. (14]

VI. CONCLUSION [19]
The paper proposed two new methods for the :stabilit%/hes
analysis of event-based state-feedback loops based on 3
representation of the control loop as an impulsive system.
The investigations have shown that the event-based statél]
feedback loop is generally ISpS which is in line with the
analysis results known from literature. However, if therpla

tailored for event-based state-feedback loops with stable
plant dynamics considerably diminishes the conservatism o
existing methods known from literature.
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