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Abstract: This paper proposes a new event-based control method for nonlinear systems that
are input-output linearizable. The control input generator uses a copy of a continuous reference
system to generate an exponential control input that keeps the state of the disturbed plant in
a bounded surrounding of the setpoint. An upper bound for the deviation of the event-based
control loop to the reference system is derived, which depends on the event threshold of the
event generator. Hence, by appropriately choosing the event threshold, the event-based control
can be made to mimic the continuous control with arbitrary accuracy. The proposed event-based
control method is applied to a cooling process.
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1. INTRODUCTION

1.1 Event-based control

Event-based control is a new control paradigm that aims
at reducing the communication between the sensors, the
controller and the actuators within a control loop by
initiating a communication among these components only
after an event has indicated that the control error exceeds
a threshold. With this control strategy, the network uti-
lization shall be minimized.

The event-based control loop, as investigated in this paper,
is illustrated in Fig. 1. It consists of three parts:

• the plant with input u(t), output y(t), state x(t) and
disturbance vector d(t),

• the event generator and
• the control input generator, which incorporates the
controller.

The event generator determines the event time instants
tk (k = 0, 1, ...) at which a communication between the
event generator and the control input generator is in-
duced and transmits the sensor data, as well as previously

processed signals like the disturbance estimation d̂k. The
control input generator computes the trajectory of the
control input signal u(t) for the time interval t ∈ [tk, tk+1)
in dependence upon the information received at time tk.
In Fig. 1, the dashed arrow indicates that this informa-
tion link is only used at the event times tk (k = 0, 1, ...),
whereas the solid arrows represent a continuous informa-
tion transmission.

This paper proposes a design method for the event-based
control of nonlinear plants that are input-output lineariz-
⋆ This work was supported by the Deutsche Forschungsgemeinschaft
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Fig. 1. Event-based control loop

able. Following the idea of Lunze and Lehmann (2010), the
design aim is to make the event-based control loop mimic
a continuous state-feedback loop (hereafter referred to as
reference system) with prescribed accuracy. Copies of the
continuous reference system are used for the control input
generation and the event generation. As the linearizing
state feedback is applied, the reference system is linear
and so are the copies used in both generators. However,
due to the disturbance d(t) and the event-based sampling,
the generated control input differs from the linearizing
input and the main analysis problem to be solved in this
paper concerns the question how large the deviation of
the event-based version of the feedback and its continuous
counterpart is. An upper bound of this deviation will be
derived showing that the proposed event-based control
method reaches the control aim.

1.2 Literature review

Event-based control is a new research topic, which has
been tackled in literature mainly for linear plants, whereas
only a few publications deal with nonlinear systems. Wang
and Lemmon (2008a) consider the event-based stabiliza-
tion of an unstable, nonlinear plant. The starting point
has been a given Lyapunov function of the continuously
controlled system. The idea of this approach is to yield an
upper bound of the derivative of the Lyapunov function



by an approximation as a function of the plant state.
Each time, this approximation tends to take a nonnegative
value, the control input is updated in order to stabilize
the plant. As a zero-order hold (ZOH) was used as control
input generator, the recalculated control input signal is
held constant until the next event time instant. This basic
idea has been extended in many ways, e. g. to distributed
event-based control by Wang and Lemmon (2008b) and
event-based control with delays and data dropouts by
Wang and Lemmon (2009).

Tabuada (2007) described an event trigger mechanism for
the self-triggered stabilization of an unstable plant. In self-
triggered control, the next event time is predetermined at
the previous event time and does, therefore, not use the
current plant information.

This paper extends the work of Lunze and Lehmann (2010)
to the event-based disturbance rejection in nonlinear con-
trol systems. In contrast to the methods published in
literature, the event trigger mechanism depends solely on
the measured plant state and no Lyapunov function of the
continuous closed-loop system needs to be known. Instead
of a ZOH, a smart control input generator is proposed,
which generates an exponential control input signal.

1.3 Outline of the paper

Section 2 defines the class of nonlinear systems to be inves-
tigated, states the control aim in detail and introduces a
reference system with ideal disturbance rejection behavior.
A novel design method for the event generator and control
input generator is proposed in Section 3. Section 4 presents
a disturbance estimator that is used in the event-based
control scheme. Section 5 analyzes the performance of the
closed-loop system and shows that the deviation of the
behavior of the event-based control system to a continu-
ous reference system is bounded. Section 6 illustrates the
behavior of the event-based control method applied to a
cooling process by simulation results.

2. PROBLEM STATEMENT

2.1 Plant

The plant is described by the affine state-space model

ẋ(t) = fx(x(t)) + gx(x(t))u(t) + dx(t), x(0) = x0 (1)

y(t) = h(x(t)), (2)

where x ∈ IRn denotes the state vector, u ∈ IR is the
input and y ∈ IR is the output. The disturbance is
represented by dx ∈ D with D being a compact subset
of IRn containing the origin. fx and gx are IRn-valued
mappings with fx satisfying the relation fx(0) = 0. The
state x(t) is assumed to be measurable.

The plant (1), (2) is assumed to have the relative degree
r = n in the relevant part Ωz of the state space defined
later and is, thus, input-output linearizable in Ωz (Isidori
(1995)). Therefore, it can be described in the coordinates

z(t) = (z1(t), ..., zn(t))
T
=

(

y(t), ẏ(t), ..., y(n−1)(t)
)T

after applying the transformation

z(t) = φ(x(t)), (3)

where φ denotes a mapping φ : IRn → IRn. Applying the
transformation (3) to Eq. (1) yields the representation of
the plant in normal form

ż(t) =









z2 (t)
...

zn(t)
b (z(t))









+









0
...
0

a (z(t))









u(t) + d(t), (4)

z(0) = z0 = φ(x0),

y(t) = z1(t),

where b(z(t)) and a(z(t)) are nonlinear functions and d(t)
is the transformed disturbance. Note that

a(z(t)) 6= 0, ∀z ∈ IRn, t ≥ 0

holds, which means that the transformation (3) is globally
valid. Subsequently, the compact form

ż(t) = f(z(t)) + g(z(t))u(t) + d(t), z(0) = z0 (5)

will be used instead of Eq. (4). Since the transformation
(3) holds for all t, the state z(t) is also measurable.

2.2 Control aim

The main goal of the investigated event-based control
scheme is the rejection of the disturbance d(t) in order to
keep the state z of the plant (5) in a bounded surrounding
of the setpoint z, which is assumed to be z = 0. The
event-based control loop should be ultimately bounded,
i. e.

z(t) ∈ Ωz ⊂ IRn, ∀t ≥ 0 (6)
with

z ∈ Ωz

is required (Blanchini (1994)).

2.3 Reference system

The linearizable plants disturbance rejection can be ac-
complished by the linearizing state feedback

u(t) =
1

a(z(t))
(−b(z(t)) + v(t)) (7)

with the new input v(t), which is determined by the control
law

v(t) = −kTz(t). (8)
The static state-feedback gain kT is designed such that the
closed-loop system is stable and requirements concerning
the disturbance rejection are satisfied. Combining Eqs. (7)
and (8) yields the nonlinear control law

u(t) =
1

a(z(t))

(

−b(z(t))− kTz(t)
)

, (9)

which is applied to the plant (4). The resulting closed-loop
system is described by the linear model

ż(t) =









z2 (t)
...

zn(t)
−kTz(t)









+ d(t) = Az(t) + d(t), z(0) = z0

(10)
with

A =













0 1 0 · · · 0
0 0 1 · · · 0
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...
...

. . .
...
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−k1 −k2 −k3 · · · −kn













, (11)



where
ki > 0, ∀i = 1, ..., n

denotes the i-th element of the state-feedback gain kT.

Equation (10) represents a linear reference system for the
event-based control loop with desired disturbance rejection
behavior. The main aim of the next section is to find
an event-based feedback that has a similar disturbance
behavior as this reference system.

The system (10) is input-to-state stable. Thus, there exist
θ ∈ KL, γ ∈ K∞, such that the solution to (10) is bounded
by

||z(t)|| ≤ θ(||z0|| , t) + γ(||d||∞), (12)

where ||.|| denotes an arbitrary vector norm and

||d||∞ := ess sup
t≥0

||d(t)|| .

In other words, the reference system (10) is ultimately
bounded with

Ωz,SF = {z| ||z(t)|| ≤ θ(||z0|| , t) + γ(||d||∞)} . (13)

3. NONLINEAR EVENT-BASED CONTROL LOOP

3.1 Control input generator

In dependence upon the information received at event time
tk, the control input generator determines the function
u(t) for the time interval t ∈ [tk, tk+1). At each event time
tk, a communication is invoked, where the event generator
sends the time tk, the state

z(tk) = φ(x(tk))

and a disturbance estimate d̂k to the control input genera-
tor. The state information is used to reinitialize the model
of the plant

żs(t) = f(zs(t)) + g(zs(t))u(t) + d̂k

zs(t
+
k ) = z(tk)

(14)

which is incorporated in the control input generator. Here,
t+k denotes the time instant after the state reset. The
control input u(t) for the time interval t ∈ [tk, tk+1) is
then determined by means of the control law (9) with
z(t) = zs(t):

u(t) =
1

a(zs(t))

(

−b(zs(t))− kTzs(t)
)

. (15)

The structure of the control input generator (14), (15) is
shown in Fig. 2. The generator is a linear system described
by

żs(t) = Azs(t) + d̂k, zs(t
+
k ) = z(tk),

with matrix A given by Eq. (11).

Note that if the relation

d̂k = d(t), ∀t ≥ tk

holds, z(t) = zs(t) is satisfied and the event-based control
loop behaves exactly like the reference system (10). This
fact shows that the determination of the control input u(t)
according to Eq. (15) is an appropriate choice.

3.2 Event generator

The event generator should indicate time instants at which
an information feedback is necessary. Since the structure of
the control input generator is changed compared to linear
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Fig. 2. Control input generator

event-based control, the event generation condition that
detects these time points needs to be renewed as follows.
The event-based control loop with the plant (4) under the
control input (15) is described by the state-space model

ż(t) = Az(t) + enµ(z(t), zs(t)) + d(t), z(0) = z0 (16)

with

en = (0 . . . 0 1)
T

and

µ(z(t), zs(t)) = β(z(t), zs(t)) + kTα(z(t), zs(t))

β(z(t), zs(t)) = b(z(t))−
a(z(t))

a(zs(t))
b(zs(t))

α(z(t), zs(t)) = z(t)−
a(z(t))

a(zs(t))
zs(t).

A comparison of Eq. (16) with the reference system (10)
points out that the ideal disturbance rejection behavior is
obtained for

µ(z(t), zs(t)) = 0. (17)

This condition can generally only be kept by infinitely fast
sampling, ensuring the equality zs(t) = z(t) and, hence,

β(z(t), zs(t)) = 0, α(z(t), zs(t)) = 0.

However, the aim of event-based control is to restrict
the sampling. Hence, it is unavoidable that the function
µ(z(t), zs(t)) takes nonzero values due to a deviation
between z(t) and zs(t). The idea of event generation is
to limit the growth of the function µ(z(t), zs(t)). An event
is generated at time tk if

|µ(z(tk), zs(tk))| = e (18)

is satisfied, with the event generation threshold e ∈ IR+. At
time tk, the current plant state z(tk) and the disturbance

estimate d̂k are sent to the control input generator. After
state resetting at time tk,

µ(z(t+k ), zs(t
+
k )) = 0

holds with zs(t
+
k ) = z(tk). Hence, for all time t the

following relation holds, as well:

|µ(z(t), zs(t))| ≤ e. (19)

Moreover, at time t0 = 0, an initial event is triggered
independently of the condition (18), in order to let the
state zs(0) of the model (14) coincide with the plant state
z(0).

Subsequently the function µ(z(t), zs(t)) will be referred
to as event function and Eq. (18) denotes the event
generation condition.



3.3 Closed-loop system

The nonlinear event-based control system consists of the
following components:

• the plant (5),
• the event generator, which triggers an event if the
condition (18) is met, and

• the control input generator (14), (15).

If the k-th event is generated at time tk, the information

z(tk), d̂k is communicated from the event generator to the
control input generator. The method how the event gener-

ator determines the disturbance estimate d̂k is described
in Section 4. Between consecutive event times tk and tk+1,
the event-based control works in an open-loop fashion.

4. DISTURBANCE ESTIMATION

The components of the event-based control loop, intro-
duced in the preceding section work with an arbitrary dis-

turbance estimation d̂k, including the trivial one (d̂k = 0).
This section proposes a disturbance estimator, which is
based on the assumption that the disturbance d(t) in
(5) is slowly varying or piecewise constant in the time
interval [tk, tk+1) and can, therefore, be approximated by
the constant vector d:

d(t) ≈ d, t ∈ [tk, tk+1).

The plant model (5) then simplifies to

ż(t) = f(z(t)) + g(z(t))u(t) + d.

The solution to this differential equation for t ≥ tk is given
by

z(t) = z(tk) +

∫ t

tk

f(z(τ)) + g(z(τ))u(τ)dτ +

∫ t

tk

d dτ

and for the next event time tk+1

z(tk+1) = z(tk) +

∫ tk+1

tk

f(z(τ)) + g(z(τ))u(τ)dτ

+ (tk+1 − tk)d

holds. This equation is employed to determine the distur-
bance vector d by

d =
1

tk+1 − tk

[

z(tk+1)

−

(

z(tk) +

∫ tk+1

tk

f(z(τ)) + g(z(τ))u(τ)dτ

)]

,

(20)

which is used as the estimate d̂k+1 for the next time
interval t ≥ tk+1.

Note that

ze(tk+1) = z(tk) +

∫ tk+1

tk

f(z(τ)) + g(z(τ))u(τ)dτ

is the solution to the differential equation

że(t) = f(z(t)) + g(z(t))u(t), ze(tk) = z(tk) (21)

at the event time tk+1. Consequently, the disturbance
estimator incorporates the system (21), with the measured
plant state z(t) and the known control signal u(t) as
inputs. At the next event time tk+1, the disturbance

estimate d̂k is determined according to Eq. (20) by

d̂k+1 =
1

tk+1 − tk
(z(tk+1)− ze(tk+1)) , d̂0 = 0

and is used for the time interval t ≥ tk+1. Since for this
disturbance estimation method, the plant state z(t) has to
be measured continuously and the control input u(t) has
to be known, the estimator needs to be implemented in
the event generator. To this end, the generator also has to
incorporate the model (14), (15).

5. ANALYSIS OF THE CLOSED-LOOP SYSTEM

This section considers the difference of the behavior of
the event-based control loop represented by Eq. (16) and
of the reference system (10) in dependence on the event
threshold e. For this purpose, the state of the continuous
reference system will be denoted by zSF:

żSF(t) = AzSF(t) + d(t), zSF(0) = z0. (22)

For the difference state

δ(t) = z(t)− zSF(t) (23)

the equation

δ̇(t) = Aδ(t) + enµ(z(t), zs(t)), δ(0) = 0 (24)

represents the dynamics of the difference between the
behavior of the event-based control system (16) and the
reference system (22).

Theorem 1. The difference δ(t) between the event-based
control loop (16) and the continuous reference system (22)
is bounded from above by

||δ(t)|| ≤ δmax

with

δmax = e ·

∫ ∞

0

∣

∣

∣

∣

∣

∣
eAτen

∣

∣

∣

∣

∣

∣
dτ. (25)

Proof. Equation (24) yields the difference

δ(t) =

∫ t

0

eA(t− τ)enµ(z(τ), zs(τ))dτ,

for which an upper bound exists, since the matrix A is
stable and (19) holds. Hence, a bound on the difference
δ(t) is given by

||δ(t)|| ≤

∫ t

0

∣

∣

∣

∣

∣

∣
eA(t− τ)en

∣

∣

∣

∣

∣

∣
|µ(z(τ), zs(τ))| dτ

≤ e ·

∫ t

0

∣

∣

∣

∣

∣

∣eA(t− τ)en

∣

∣

∣

∣

∣

∣ dτ

≤ e ·

∫ ∞

0

∣

∣

∣

∣

∣

∣eAτen

∣

∣

∣

∣

∣

∣ dτ = δmax. (26)

2

Remark 1. The bound of the difference between the behav-
ior of the event-based control loop (16) and the reference
system (22) can be made arbitrarily small by scaling down
the event threshold e. A smaller event threshold however
increases the communication frequency.

Remark 2. The theorem shows that the state of the
nonlinear event-based control system always remains in
a surrounding of the reference system (10):

z(t) ∈ Ωδ(zSF(t)) = {z(t)| ||z(t)− zSF(t)|| ≤ δmax} .

Since the reference system (10) is ultimately bounded
according to (12) and the deviation between the reference
system (10) and the event-based control loop (16) is
bounded from above by (25), the event-based control loop



is ultimately bounded as well. The surrounding Ωz, in
which the state z(t) remains for all t ≥ 0, can be deduced
from Eq. (13) and is given by

Ωz = {z| ||z|| ≤ θ(||z0|| , t) + γ(||d||∞) + δmax} . (27)

Accordingly, the event-based controlled system (16) satis-
fies the control aim (6) with the bounded set Ωz defined
by (27).

Remark 3. The theorem can be extended to obtain a bound
for the difference between the output y(t) = z1(t) of the
event-based control loop and the output ySF(t) = zSF,1(t)
of the reference system

|y∆(t)| = |y(t)− ySF(t)|

≤ e ·

∫ ∞

0

∣

∣

∣e
T
1 e

Aτen

∣

∣

∣ dτ

with e1 = (1 0 . . . 0)
T
. This result gives an indication on

how to choose the event threshold e.

6. EXAMPLE

6.1 Cooling process model

The proposed event-based control method is now illus-
trated by its application to the cooling process depicted
in Fig. 3. The process consists of a cylindrical tank,
surrounded by a cooling jacket. The tank is fed by a
constant inflow qt,in, which has the constant temperature
ϑin = 24 ◦C. For the outflow qt,out = qt,in is assumed, such
that the filling level of the tank is constant. The cooling
jacket is used to lower the temperature of the fluid in
the tank. The inflow qc,in of the coolant with constant
temperature ϑCU = 5 ◦C is used as the input u(t), in
order to keep the temperature ϑt of tank at the desired
value of ϑt = 20 ◦C. The temperature of the coolant in
the cooling jacket is denoted by ϑc. Desired disturbance
characteristics can be realized by means of the heating
rods, which directly influence the temperature ϑt of the
liquid in the tank.

The process has the measurable state variables

(x1 x2)
T
= (ϑt ϑc)

T

and is described by the model

ẋ(t) = 10−3

(

0.6 · x1(t)− 1.31 · x2(t) + 2.14
−4.6 · x1(t) + 4.6 · x2(t)

)

+

(

0
−3.75− 0.25 · x2(t)

)

u(t) + 10−4

(

3.57 · p
0

)

y(t) = x1(t), (28)

where p ∈ {0, 1, 2, 3, 4} denotes the number of used heating
rods. With the local coordinate transformation

z(t) = 10−3

(

1000 · x1(t)
0.6 · x1(t)− 1.31 · x2(t) + 2.14

)

(29)

the system (28) is represented in normal form by

ż(t) =

(

z2(t)
b(z(t))

)

+

(

0
a(z(t))

)

· u(t) + 10−4

(

3.57 · p
0

)

,

with

b(z(t)) = 10−4 (0.033 · z1(t)− 52 · z2(t) + 0.098) (30)

and

a(z(t)) = 10−4 (1.5 · z1(t)− 2500 · z2(t) + 54.64) . (31)

ϑt

ϑc

qt,in

qt,out

u q= c,in

qc,out

d

cooling
jacket

Fig. 3. Cooling process

Note that the transformation (29) causes a displacement
of the origin, such that the inverse transformation of (29)
yields

φ−1(0) = (0 1.63)
T
.

This displacement only affects the temperature x2 = ϑc of
the coolant, in terms of an offset of the steady-state, even
in the case of no disturbance. To compensate for this, a
more sophisticated control method like asymptotic output
tracking (Khalil (2002)) instead of a state feedback would
have to be used. However, in this example the control aim
is to keep the temperature x1 of the liquid in the tank at a
constant level, which is not endangered by the offset of the
temperature x2 of the coolant. Therefore, a state-feedback
controller is applied with the state-feedback gain

kT = (0.0026 0.11) , (32)

which is designed such that the continuously controlled
system has a satisfactory disturbance rejection behavior.

The event generator uses the event threshold

e = 1 · 10−4

to determine the event time instants. With this parameter
and the state-feedback gain (32), the maximal deviation
between the reference system and the event-based control
loop according to (25) results to

δmax = 0.043. (33)

6.2 Simulation results

Constant disturbance. First, the behavior of the event-
based control loop is investigated in case of a constant
disturbance

d1(t) = 10−4(3.57 · p)

with p = 3. (left-hand side of Fig. 4). An event is generated
at time t1, when the trigger condition (18) is satisfied,
indicated by a stem in the bottom subplot. At this time,
the disturbance d(t) is estimated correctly and the event

generator sends the estimation d̂1 and the plant state z(t1)
to the control input generator. Since from this time on, the
disturbance d1(t) does not change, the model state zs(t)
and the plant state z(t) are identical and no further event
is generated. At steady-state the behavior of the event-
based control loop coincides with the one of the reference
system (cf. second and third subplot from the top).
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Fig. 4. Behavior of the event-based control loop in case
of constant disturbance (left) and piecewise constant
disturbance (right).

In this case of constant disturbance, only one feedback
communication, except the initial one, is induced. The
transferred information is sufficient in order to keep the
deviation between the plant state z(t) and the state of the
reference system zSF(t) below the bound (33), as shown
by the second subplot from the bottom.

Time-varying disturbance. The second investigation
(right-hand side of Fig. 4) concerns the behavior of the
event-based control loop subject to a time-varying distur-
bance d1(t). Over the period of 1400 seconds, eight events,
except the initial one, are generated.

Similarly to the first investigation, an event is triggered
at time t = t1 and the disturbance is correctly estimated.
Since the disturbance varies, a new event at time t = t2 is
triggered. At this second event time however, the distur-

bance estimate d̂2 is a weighted average of the disturbance
d1(t) in the preceding interval [t1, t2). The estimation value

d̂1 and the real disturbance d(t) do not coincide, until a
new event at time t = t3 is generated and the disturbance
d(t) is estimated correctly again. After the event at time
t = t8, the disturbance d(t) remains constant and the

estimation value d̂8 coincides with its magnitude, hence no
further events are generated. At steady-state, the states of
the event-based control loop and of the reference system
coincide.

In this case, the control aim is achieved by initiating a
communication at eight time instants. Compared with the
continuous reference system, a satisfactory disturbance
rejection behavior of the event-based control loop was
preserved, since the deviation of the dynamics of both
systems remains in the derived range (33) (cf. second
subplot from the bottom).

7. CONCLUSION

The paper proposed a new event-based control scheme for
nonlinear systems. The difference between the behavior
of the event-based control loop and a continuous state-
feedback control loop with ideal disturbance rejection was
shown to be bounded. It can be made arbitrarily small by
appropriately downsizing the event threshold parameter of
the event generator.

Simulation results of the application of the event-based
control method to a cooling process indicated that the
feedback communication effort is considerably reduced
comparing to a continuous state feedback, while preserving
a satisfactory disturbance rejection behavior.
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